Evaluate $int_1^edfrac1+x^2ln xx+x^2 ln x dx$
Clash Royale CLAN TAG#URR8PPP
up vote
5
down vote
favorite
$$int_1^edfrac1+x^2ln xx+x^2 ln x dx$$
Attempt:
I have tried substitutions like $ln x = t$, but they are just not helping.
I end up with : $displaystyleint_0^1 dfrac1+e^2tt1+ e^t t dt $
Here method of substitution isn't really possible and integration by parts won't help. How else do I solve it?
calculus definite-integrals
add a comment |Â
up vote
5
down vote
favorite
$$int_1^edfrac1+x^2ln xx+x^2 ln x dx$$
Attempt:
I have tried substitutions like $ln x = t$, but they are just not helping.
I end up with : $displaystyleint_0^1 dfrac1+e^2tt1+ e^t t dt $
Here method of substitution isn't really possible and integration by parts won't help. How else do I solve it?
calculus definite-integrals
$ln x=t$ is a good substitution.
– Nosrati
Jul 24 at 2:57
add a comment |Â
up vote
5
down vote
favorite
up vote
5
down vote
favorite
$$int_1^edfrac1+x^2ln xx+x^2 ln x dx$$
Attempt:
I have tried substitutions like $ln x = t$, but they are just not helping.
I end up with : $displaystyleint_0^1 dfrac1+e^2tt1+ e^t t dt $
Here method of substitution isn't really possible and integration by parts won't help. How else do I solve it?
calculus definite-integrals
$$int_1^edfrac1+x^2ln xx+x^2 ln x dx$$
Attempt:
I have tried substitutions like $ln x = t$, but they are just not helping.
I end up with : $displaystyleint_0^1 dfrac1+e^2tt1+ e^t t dt $
Here method of substitution isn't really possible and integration by parts won't help. How else do I solve it?
calculus definite-integrals
edited Jul 24 at 12:33
asked Jul 24 at 2:53
Abcd
2,3361624
2,3361624
$ln x=t$ is a good substitution.
– Nosrati
Jul 24 at 2:57
add a comment |Â
$ln x=t$ is a good substitution.
– Nosrati
Jul 24 at 2:57
$ln x=t$ is a good substitution.
– Nosrati
Jul 24 at 2:57
$ln x=t$ is a good substitution.
– Nosrati
Jul 24 at 2:57
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
16
down vote
accepted
The OP asked, "How else do I solve it?" We proceed to use a straightforward approach that circumvents the use of substitutions.
We need not use any substitutions. Rather, we can write
$$beginalign
int_1^e frac1+x^2log(x)x+x^2log(x),dx&=int_1^e frac1-x+x+x^2log(x)x+x^2log(x),dx\\
&=(e-1)+int_1^e frac1-xx+x^2log(x),dx\\
&=(e-1)+int_1^e left(frac1-xx+x^2log(x)-frac1xright),dx+int_1^e frac1x,dx\\
&=e-int_1^e frac1+log(x)1+xlog(x),dx\\
&=e-left.left(log(1+xlog(x)) right)right|_1^e\\
&=e-log(1+e)
endalign$$
2
Hi Mark ! May be, you could be more precise and recall that that $(1+xlog(x))'=1+log(x)$
– Claude Leibovici
Jul 24 at 4:37
add a comment |Â
up vote
1
down vote
Let $$I = int frac1+x^2ln xx+x^2ln xdx$$
Divide both Numerator and Denominator by $x^2$
so $$I = int fracfrac1x^2+ln xfrac1x+ln xdx = int fracbigg(frac1x+ln xbigg)-bigg(frac1x-frac1x^2bigg)frac1x+ln xdx$$
so $$I = x-ln bigg|frac1x+ln xbigg|+mathcalC.$$
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
16
down vote
accepted
The OP asked, "How else do I solve it?" We proceed to use a straightforward approach that circumvents the use of substitutions.
We need not use any substitutions. Rather, we can write
$$beginalign
int_1^e frac1+x^2log(x)x+x^2log(x),dx&=int_1^e frac1-x+x+x^2log(x)x+x^2log(x),dx\\
&=(e-1)+int_1^e frac1-xx+x^2log(x),dx\\
&=(e-1)+int_1^e left(frac1-xx+x^2log(x)-frac1xright),dx+int_1^e frac1x,dx\\
&=e-int_1^e frac1+log(x)1+xlog(x),dx\\
&=e-left.left(log(1+xlog(x)) right)right|_1^e\\
&=e-log(1+e)
endalign$$
2
Hi Mark ! May be, you could be more precise and recall that that $(1+xlog(x))'=1+log(x)$
– Claude Leibovici
Jul 24 at 4:37
add a comment |Â
up vote
16
down vote
accepted
The OP asked, "How else do I solve it?" We proceed to use a straightforward approach that circumvents the use of substitutions.
We need not use any substitutions. Rather, we can write
$$beginalign
int_1^e frac1+x^2log(x)x+x^2log(x),dx&=int_1^e frac1-x+x+x^2log(x)x+x^2log(x),dx\\
&=(e-1)+int_1^e frac1-xx+x^2log(x),dx\\
&=(e-1)+int_1^e left(frac1-xx+x^2log(x)-frac1xright),dx+int_1^e frac1x,dx\\
&=e-int_1^e frac1+log(x)1+xlog(x),dx\\
&=e-left.left(log(1+xlog(x)) right)right|_1^e\\
&=e-log(1+e)
endalign$$
2
Hi Mark ! May be, you could be more precise and recall that that $(1+xlog(x))'=1+log(x)$
– Claude Leibovici
Jul 24 at 4:37
add a comment |Â
up vote
16
down vote
accepted
up vote
16
down vote
accepted
The OP asked, "How else do I solve it?" We proceed to use a straightforward approach that circumvents the use of substitutions.
We need not use any substitutions. Rather, we can write
$$beginalign
int_1^e frac1+x^2log(x)x+x^2log(x),dx&=int_1^e frac1-x+x+x^2log(x)x+x^2log(x),dx\\
&=(e-1)+int_1^e frac1-xx+x^2log(x),dx\\
&=(e-1)+int_1^e left(frac1-xx+x^2log(x)-frac1xright),dx+int_1^e frac1x,dx\\
&=e-int_1^e frac1+log(x)1+xlog(x),dx\\
&=e-left.left(log(1+xlog(x)) right)right|_1^e\\
&=e-log(1+e)
endalign$$
The OP asked, "How else do I solve it?" We proceed to use a straightforward approach that circumvents the use of substitutions.
We need not use any substitutions. Rather, we can write
$$beginalign
int_1^e frac1+x^2log(x)x+x^2log(x),dx&=int_1^e frac1-x+x+x^2log(x)x+x^2log(x),dx\\
&=(e-1)+int_1^e frac1-xx+x^2log(x),dx\\
&=(e-1)+int_1^e left(frac1-xx+x^2log(x)-frac1xright),dx+int_1^e frac1x,dx\\
&=e-int_1^e frac1+log(x)1+xlog(x),dx\\
&=e-left.left(log(1+xlog(x)) right)right|_1^e\\
&=e-log(1+e)
endalign$$
edited Jul 24 at 3:11
answered Jul 24 at 3:04
Mark Viola
126k1172167
126k1172167
2
Hi Mark ! May be, you could be more precise and recall that that $(1+xlog(x))'=1+log(x)$
– Claude Leibovici
Jul 24 at 4:37
add a comment |Â
2
Hi Mark ! May be, you could be more precise and recall that that $(1+xlog(x))'=1+log(x)$
– Claude Leibovici
Jul 24 at 4:37
2
2
Hi Mark ! May be, you could be more precise and recall that that $(1+xlog(x))'=1+log(x)$
– Claude Leibovici
Jul 24 at 4:37
Hi Mark ! May be, you could be more precise and recall that that $(1+xlog(x))'=1+log(x)$
– Claude Leibovici
Jul 24 at 4:37
add a comment |Â
up vote
1
down vote
Let $$I = int frac1+x^2ln xx+x^2ln xdx$$
Divide both Numerator and Denominator by $x^2$
so $$I = int fracfrac1x^2+ln xfrac1x+ln xdx = int fracbigg(frac1x+ln xbigg)-bigg(frac1x-frac1x^2bigg)frac1x+ln xdx$$
so $$I = x-ln bigg|frac1x+ln xbigg|+mathcalC.$$
add a comment |Â
up vote
1
down vote
Let $$I = int frac1+x^2ln xx+x^2ln xdx$$
Divide both Numerator and Denominator by $x^2$
so $$I = int fracfrac1x^2+ln xfrac1x+ln xdx = int fracbigg(frac1x+ln xbigg)-bigg(frac1x-frac1x^2bigg)frac1x+ln xdx$$
so $$I = x-ln bigg|frac1x+ln xbigg|+mathcalC.$$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Let $$I = int frac1+x^2ln xx+x^2ln xdx$$
Divide both Numerator and Denominator by $x^2$
so $$I = int fracfrac1x^2+ln xfrac1x+ln xdx = int fracbigg(frac1x+ln xbigg)-bigg(frac1x-frac1x^2bigg)frac1x+ln xdx$$
so $$I = x-ln bigg|frac1x+ln xbigg|+mathcalC.$$
Let $$I = int frac1+x^2ln xx+x^2ln xdx$$
Divide both Numerator and Denominator by $x^2$
so $$I = int fracfrac1x^2+ln xfrac1x+ln xdx = int fracbigg(frac1x+ln xbigg)-bigg(frac1x-frac1x^2bigg)frac1x+ln xdx$$
so $$I = x-ln bigg|frac1x+ln xbigg|+mathcalC.$$
answered Jul 24 at 14:22
Durgesh Tiwari
4,7862426
4,7862426
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2860963%2fevaluate-int-1e-dfrac1x2-ln-xxx2-ln-x-dx%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
$ln x=t$ is a good substitution.
– Nosrati
Jul 24 at 2:57