Rate of convergence of the product of two random variable sequences

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite
1












Given that
$$forall epsilon_1 exists delta_epsilon_1>0, N_epsilon_1>0,text s.t. Pr n^alpha <epsilon_1 forall n>N_epsilon_1$$
$$forall epsilon_2 exists delta_epsilon_2>0, N_epsilon_2>0,text s.t. Pr n^beta <epsilon_2 forall n>N_epsilon_2 $$



How to prove that
$$forall epsilon exists delta_epsilon>0, N_epsilon>0,text s.t. Pr n^alpha+beta <epsilon forall n>N_epsilon $$



In other word, can we get $X_nY_n=O_p(n^-(alpha+beta))$ based on $X_n=O_p(n^-alpha)$ and $Y_n=O_p(n^-beta)$? what conditions should be added? Thanks!







share|cite|improve this question

















  • 1




    Likely the second inequality should have $epsilon_2$ inside the $Pr$. Also, should that have $Y_n$ instead of $X_n$? Else, $Y_n$ is not introduced anywhere.
    – Michael
    Jul 23 at 23:56











  • Yes, I will correct it, thanks!
    – Carlton Chen
    Jul 23 at 23:59






  • 1




    What if you use the following (assuming $delta>0$): $$>deltasubseteq >sqrtdelta cup $$
    – Michael
    Jul 24 at 0:00











  • You didn't actually correct it; it still says $X_n$ in the second inequality.
    – joriki
    Jul 24 at 3:30










  • Thank you @Michael, I guess the complete proof shoyld be:
    – Carlton Chen
    Jul 24 at 13:52














up vote
1
down vote

favorite
1












Given that
$$forall epsilon_1 exists delta_epsilon_1>0, N_epsilon_1>0,text s.t. Pr n^alpha <epsilon_1 forall n>N_epsilon_1$$
$$forall epsilon_2 exists delta_epsilon_2>0, N_epsilon_2>0,text s.t. Pr n^beta <epsilon_2 forall n>N_epsilon_2 $$



How to prove that
$$forall epsilon exists delta_epsilon>0, N_epsilon>0,text s.t. Pr n^alpha+beta <epsilon forall n>N_epsilon $$



In other word, can we get $X_nY_n=O_p(n^-(alpha+beta))$ based on $X_n=O_p(n^-alpha)$ and $Y_n=O_p(n^-beta)$? what conditions should be added? Thanks!







share|cite|improve this question

















  • 1




    Likely the second inequality should have $epsilon_2$ inside the $Pr$. Also, should that have $Y_n$ instead of $X_n$? Else, $Y_n$ is not introduced anywhere.
    – Michael
    Jul 23 at 23:56











  • Yes, I will correct it, thanks!
    – Carlton Chen
    Jul 23 at 23:59






  • 1




    What if you use the following (assuming $delta>0$): $$>deltasubseteq >sqrtdelta cup $$
    – Michael
    Jul 24 at 0:00











  • You didn't actually correct it; it still says $X_n$ in the second inequality.
    – joriki
    Jul 24 at 3:30










  • Thank you @Michael, I guess the complete proof shoyld be:
    – Carlton Chen
    Jul 24 at 13:52












up vote
1
down vote

favorite
1









up vote
1
down vote

favorite
1






1





Given that
$$forall epsilon_1 exists delta_epsilon_1>0, N_epsilon_1>0,text s.t. Pr n^alpha <epsilon_1 forall n>N_epsilon_1$$
$$forall epsilon_2 exists delta_epsilon_2>0, N_epsilon_2>0,text s.t. Pr n^beta <epsilon_2 forall n>N_epsilon_2 $$



How to prove that
$$forall epsilon exists delta_epsilon>0, N_epsilon>0,text s.t. Pr n^alpha+beta <epsilon forall n>N_epsilon $$



In other word, can we get $X_nY_n=O_p(n^-(alpha+beta))$ based on $X_n=O_p(n^-alpha)$ and $Y_n=O_p(n^-beta)$? what conditions should be added? Thanks!







share|cite|improve this question













Given that
$$forall epsilon_1 exists delta_epsilon_1>0, N_epsilon_1>0,text s.t. Pr n^alpha <epsilon_1 forall n>N_epsilon_1$$
$$forall epsilon_2 exists delta_epsilon_2>0, N_epsilon_2>0,text s.t. Pr n^beta <epsilon_2 forall n>N_epsilon_2 $$



How to prove that
$$forall epsilon exists delta_epsilon>0, N_epsilon>0,text s.t. Pr n^alpha+beta <epsilon forall n>N_epsilon $$



In other word, can we get $X_nY_n=O_p(n^-(alpha+beta))$ based on $X_n=O_p(n^-alpha)$ and $Y_n=O_p(n^-beta)$? what conditions should be added? Thanks!









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 24 at 9:55
























asked Jul 23 at 23:54









Carlton Chen

62




62







  • 1




    Likely the second inequality should have $epsilon_2$ inside the $Pr$. Also, should that have $Y_n$ instead of $X_n$? Else, $Y_n$ is not introduced anywhere.
    – Michael
    Jul 23 at 23:56











  • Yes, I will correct it, thanks!
    – Carlton Chen
    Jul 23 at 23:59






  • 1




    What if you use the following (assuming $delta>0$): $$>deltasubseteq >sqrtdelta cup $$
    – Michael
    Jul 24 at 0:00











  • You didn't actually correct it; it still says $X_n$ in the second inequality.
    – joriki
    Jul 24 at 3:30










  • Thank you @Michael, I guess the complete proof shoyld be:
    – Carlton Chen
    Jul 24 at 13:52












  • 1




    Likely the second inequality should have $epsilon_2$ inside the $Pr$. Also, should that have $Y_n$ instead of $X_n$? Else, $Y_n$ is not introduced anywhere.
    – Michael
    Jul 23 at 23:56











  • Yes, I will correct it, thanks!
    – Carlton Chen
    Jul 23 at 23:59






  • 1




    What if you use the following (assuming $delta>0$): $$>deltasubseteq >sqrtdelta cup $$
    – Michael
    Jul 24 at 0:00











  • You didn't actually correct it; it still says $X_n$ in the second inequality.
    – joriki
    Jul 24 at 3:30










  • Thank you @Michael, I guess the complete proof shoyld be:
    – Carlton Chen
    Jul 24 at 13:52







1




1




Likely the second inequality should have $epsilon_2$ inside the $Pr$. Also, should that have $Y_n$ instead of $X_n$? Else, $Y_n$ is not introduced anywhere.
– Michael
Jul 23 at 23:56





Likely the second inequality should have $epsilon_2$ inside the $Pr$. Also, should that have $Y_n$ instead of $X_n$? Else, $Y_n$ is not introduced anywhere.
– Michael
Jul 23 at 23:56













Yes, I will correct it, thanks!
– Carlton Chen
Jul 23 at 23:59




Yes, I will correct it, thanks!
– Carlton Chen
Jul 23 at 23:59




1




1




What if you use the following (assuming $delta>0$): $$>deltasubseteq >sqrtdelta cup $$
– Michael
Jul 24 at 0:00





What if you use the following (assuming $delta>0$): $$>deltasubseteq >sqrtdelta cup $$
– Michael
Jul 24 at 0:00













You didn't actually correct it; it still says $X_n$ in the second inequality.
– joriki
Jul 24 at 3:30




You didn't actually correct it; it still says $X_n$ in the second inequality.
– joriki
Jul 24 at 3:30












Thank you @Michael, I guess the complete proof shoyld be:
– Carlton Chen
Jul 24 at 13:52




Thank you @Michael, I guess the complete proof shoyld be:
– Carlton Chen
Jul 24 at 13:52










1 Answer
1






active

oldest

votes

















up vote
0
down vote













Thank you @Michael. I guess the proof shuold be: $forall epsilon_1<fracepsilon2, epsilon_2<fracepsilon2, exists delta_1gedelta_epsilon_1gesqrtdelta, delta_2gedelta_epsilon_2gesqrtdelta,
N_epsilon_1,delta_1ge 0, N_epsilon_2,delta_2ge 0$ s.t.



beginalign*
P n^alpha+beta &le P ge delta_1 + P n^beta \
&le fracepsilon2 + fracepsilon2 \
&= epsilon textfor forall n>maxN_epsilon_1,delta_1, N_epsilon_2,delta_2
endalign*



Am I right?






share|cite|improve this answer





















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2860883%2frate-of-convergence-of-the-product-of-two-random-variable-sequences%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote













    Thank you @Michael. I guess the proof shuold be: $forall epsilon_1<fracepsilon2, epsilon_2<fracepsilon2, exists delta_1gedelta_epsilon_1gesqrtdelta, delta_2gedelta_epsilon_2gesqrtdelta,
    N_epsilon_1,delta_1ge 0, N_epsilon_2,delta_2ge 0$ s.t.



    beginalign*
    P n^alpha+beta &le P ge delta_1 + P n^beta \
    &le fracepsilon2 + fracepsilon2 \
    &= epsilon textfor forall n>maxN_epsilon_1,delta_1, N_epsilon_2,delta_2
    endalign*



    Am I right?






    share|cite|improve this answer

























      up vote
      0
      down vote













      Thank you @Michael. I guess the proof shuold be: $forall epsilon_1<fracepsilon2, epsilon_2<fracepsilon2, exists delta_1gedelta_epsilon_1gesqrtdelta, delta_2gedelta_epsilon_2gesqrtdelta,
      N_epsilon_1,delta_1ge 0, N_epsilon_2,delta_2ge 0$ s.t.



      beginalign*
      P n^alpha+beta &le P ge delta_1 + P n^beta \
      &le fracepsilon2 + fracepsilon2 \
      &= epsilon textfor forall n>maxN_epsilon_1,delta_1, N_epsilon_2,delta_2
      endalign*



      Am I right?






      share|cite|improve this answer























        up vote
        0
        down vote










        up vote
        0
        down vote









        Thank you @Michael. I guess the proof shuold be: $forall epsilon_1<fracepsilon2, epsilon_2<fracepsilon2, exists delta_1gedelta_epsilon_1gesqrtdelta, delta_2gedelta_epsilon_2gesqrtdelta,
        N_epsilon_1,delta_1ge 0, N_epsilon_2,delta_2ge 0$ s.t.



        beginalign*
        P n^alpha+beta &le P ge delta_1 + P n^beta \
        &le fracepsilon2 + fracepsilon2 \
        &= epsilon textfor forall n>maxN_epsilon_1,delta_1, N_epsilon_2,delta_2
        endalign*



        Am I right?






        share|cite|improve this answer













        Thank you @Michael. I guess the proof shuold be: $forall epsilon_1<fracepsilon2, epsilon_2<fracepsilon2, exists delta_1gedelta_epsilon_1gesqrtdelta, delta_2gedelta_epsilon_2gesqrtdelta,
        N_epsilon_1,delta_1ge 0, N_epsilon_2,delta_2ge 0$ s.t.



        beginalign*
        P n^alpha+beta &le P ge delta_1 + P n^beta \
        &le fracepsilon2 + fracepsilon2 \
        &= epsilon textfor forall n>maxN_epsilon_1,delta_1, N_epsilon_2,delta_2
        endalign*



        Am I right?







        share|cite|improve this answer













        share|cite|improve this answer



        share|cite|improve this answer











        answered Jul 24 at 13:54









        Carlton Chen

        62




        62






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2860883%2frate-of-convergence-of-the-product-of-two-random-variable-sequences%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What is the equation of a 3D cone with generalised tilt?

            Color the edges and diagonals of a regular polygon

            Relationship between determinant of matrix and determinant of adjoint?