Proving a long-ish trig identity
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Prove this identity without using cross multiplication by manipulating one side using trig identities:
$$fracsin^3x-cos^3xsin x+cos x = fraccsc^2x-cot x-2cos^2x1-cot^2x$$
I first started off on the LHS and managed to get the denominator to become $1-cot^2x$ by multiplying by $sin x - cos x$ and then dividing by $sin^2 x$, but from there I had no idea how to continue.
algebra-precalculus trigonometry
add a comment |Â
up vote
0
down vote
favorite
Prove this identity without using cross multiplication by manipulating one side using trig identities:
$$fracsin^3x-cos^3xsin x+cos x = fraccsc^2x-cot x-2cos^2x1-cot^2x$$
I first started off on the LHS and managed to get the denominator to become $1-cot^2x$ by multiplying by $sin x - cos x$ and then dividing by $sin^2 x$, but from there I had no idea how to continue.
algebra-precalculus trigonometry
2
Start with the RHS, convert everything to sin and cos, it is easier to work that way. Then simplify.
â Isko10986
Jul 23 at 20:31
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Prove this identity without using cross multiplication by manipulating one side using trig identities:
$$fracsin^3x-cos^3xsin x+cos x = fraccsc^2x-cot x-2cos^2x1-cot^2x$$
I first started off on the LHS and managed to get the denominator to become $1-cot^2x$ by multiplying by $sin x - cos x$ and then dividing by $sin^2 x$, but from there I had no idea how to continue.
algebra-precalculus trigonometry
Prove this identity without using cross multiplication by manipulating one side using trig identities:
$$fracsin^3x-cos^3xsin x+cos x = fraccsc^2x-cot x-2cos^2x1-cot^2x$$
I first started off on the LHS and managed to get the denominator to become $1-cot^2x$ by multiplying by $sin x - cos x$ and then dividing by $sin^2 x$, but from there I had no idea how to continue.
algebra-precalculus trigonometry
edited Jul 23 at 20:34
Bernard
110k635103
110k635103
asked Jul 23 at 20:28
Jessca
32
32
2
Start with the RHS, convert everything to sin and cos, it is easier to work that way. Then simplify.
â Isko10986
Jul 23 at 20:31
add a comment |Â
2
Start with the RHS, convert everything to sin and cos, it is easier to work that way. Then simplify.
â Isko10986
Jul 23 at 20:31
2
2
Start with the RHS, convert everything to sin and cos, it is easier to work that way. Then simplify.
â Isko10986
Jul 23 at 20:31
Start with the RHS, convert everything to sin and cos, it is easier to work that way. Then simplify.
â Isko10986
Jul 23 at 20:31
add a comment |Â
4 Answers
4
active
oldest
votes
up vote
2
down vote
accepted
Let $s= sin x $ and $c=cos x$
begineqnarray*
fracs^3-c^3s+c fracs-cs-c = fracs^4+c^4-sc(s^2+c^2)s^2-c^2.
endeqnarray*
Now $s^4+c^4=(s^2+c^2)^2-2s^2 c^2$ and divide top & bottom by $s^2$
begineqnarray*
frac1/s^2-c/s-2c^21-c^2/s^2 .
endeqnarray*
add a comment |Â
up vote
1
down vote
Note that
beginalign
sin^3(x)-cos^3(x) & = (sin(x)-cos(x))(sin^2(x)+cos^2(x)+sin(x)cos(x)) \
& =(sin(x)-cos(x))(1+sin(x)cos(x)).
endalign
Therefore,
beginalign
fracsin^3(x)-cos^3(x)sin(x)+cos(x) & = frac(sin(x)-cos(x))(1+sin(x)cos(x))sin(x)+cos(x) \
& = frac(sin(x)-cos(x))^2(1+sin(x)cos(x))sin^2(x)-cos^2(x) \
& = frac(1-2sin(x)cos(x))(1+sin(x)cos(x))sin^2(x)-cos^2(x) \
& = frac1-sin(x)cos(x)-2sin^2(x)cos^2(x)sin^2(x)-cos^2(x) \
& = fracsin^2(x)sin^2(x)fraccsc^2(x)-cot(x)-2cos^2(x)1-cot^2(x).
endalign
add a comment |Â
up vote
1
down vote
I'd start with the right-hand side:
beginalign
fraccsc^2x-cot x-2cos^2x1-cot^2x
&=fracdfrac1sin^2x-dfraccos xsin x-2cos^2x1-dfraccos^2xsin^2x
\[6px]
&=frac1-sin xcos x-2cos^2xsin^2xsin^2x-cos^2x
\[6px]
&=frac(sin^2x+cos^2x)^2-(sin^2x+cos^2x)sin xcos x-2sin^2xcos^2xsin^2x-cos^2x
\[6px]
&=fracsin^4x-sin^3xcos x-sin xcos^3x+cos^4xsin^2x-cos^2x
\[6px]
&=fracsin^3x(sin x-cos x)-cos^3x(sin x-cos x)sin^2x-cos^2x
\[6px]
&=frac(sin^3x-cos^3x)(sin x-cos x)(sin x+cos x)(sin x-cos x)
\[6px]
&=fracsin^3x-cos^3xsin x+cos x
endalign
The trick is to âÂÂmake the numerator homogeneousâÂÂ.
add a comment |Â
up vote
0
down vote
Use that $$sin^2(x)(1-cot(x)^2)=sin(x)^2-cos(x)^2$$
then we get
$$fracsin(x)^3-cos(x)^3sin(x)+cos(x)=frac2cos(x)^4-2cos(x)^2-sin(x)cos(x)+1(sin(x)+cos(x))(sin(x)-cos(x))$$
and then use that
$$sin(x)^3-cos(x)^3=(sin(x)-cos(x))(sin(x)^2+sin(x)cos(x)+cos(x)^2)$$
add a comment |Â
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
Let $s= sin x $ and $c=cos x$
begineqnarray*
fracs^3-c^3s+c fracs-cs-c = fracs^4+c^4-sc(s^2+c^2)s^2-c^2.
endeqnarray*
Now $s^4+c^4=(s^2+c^2)^2-2s^2 c^2$ and divide top & bottom by $s^2$
begineqnarray*
frac1/s^2-c/s-2c^21-c^2/s^2 .
endeqnarray*
add a comment |Â
up vote
2
down vote
accepted
Let $s= sin x $ and $c=cos x$
begineqnarray*
fracs^3-c^3s+c fracs-cs-c = fracs^4+c^4-sc(s^2+c^2)s^2-c^2.
endeqnarray*
Now $s^4+c^4=(s^2+c^2)^2-2s^2 c^2$ and divide top & bottom by $s^2$
begineqnarray*
frac1/s^2-c/s-2c^21-c^2/s^2 .
endeqnarray*
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
Let $s= sin x $ and $c=cos x$
begineqnarray*
fracs^3-c^3s+c fracs-cs-c = fracs^4+c^4-sc(s^2+c^2)s^2-c^2.
endeqnarray*
Now $s^4+c^4=(s^2+c^2)^2-2s^2 c^2$ and divide top & bottom by $s^2$
begineqnarray*
frac1/s^2-c/s-2c^21-c^2/s^2 .
endeqnarray*
Let $s= sin x $ and $c=cos x$
begineqnarray*
fracs^3-c^3s+c fracs-cs-c = fracs^4+c^4-sc(s^2+c^2)s^2-c^2.
endeqnarray*
Now $s^4+c^4=(s^2+c^2)^2-2s^2 c^2$ and divide top & bottom by $s^2$
begineqnarray*
frac1/s^2-c/s-2c^21-c^2/s^2 .
endeqnarray*
answered Jul 23 at 20:38
Donald Splutterwit
21.3k21243
21.3k21243
add a comment |Â
add a comment |Â
up vote
1
down vote
Note that
beginalign
sin^3(x)-cos^3(x) & = (sin(x)-cos(x))(sin^2(x)+cos^2(x)+sin(x)cos(x)) \
& =(sin(x)-cos(x))(1+sin(x)cos(x)).
endalign
Therefore,
beginalign
fracsin^3(x)-cos^3(x)sin(x)+cos(x) & = frac(sin(x)-cos(x))(1+sin(x)cos(x))sin(x)+cos(x) \
& = frac(sin(x)-cos(x))^2(1+sin(x)cos(x))sin^2(x)-cos^2(x) \
& = frac(1-2sin(x)cos(x))(1+sin(x)cos(x))sin^2(x)-cos^2(x) \
& = frac1-sin(x)cos(x)-2sin^2(x)cos^2(x)sin^2(x)-cos^2(x) \
& = fracsin^2(x)sin^2(x)fraccsc^2(x)-cot(x)-2cos^2(x)1-cot^2(x).
endalign
add a comment |Â
up vote
1
down vote
Note that
beginalign
sin^3(x)-cos^3(x) & = (sin(x)-cos(x))(sin^2(x)+cos^2(x)+sin(x)cos(x)) \
& =(sin(x)-cos(x))(1+sin(x)cos(x)).
endalign
Therefore,
beginalign
fracsin^3(x)-cos^3(x)sin(x)+cos(x) & = frac(sin(x)-cos(x))(1+sin(x)cos(x))sin(x)+cos(x) \
& = frac(sin(x)-cos(x))^2(1+sin(x)cos(x))sin^2(x)-cos^2(x) \
& = frac(1-2sin(x)cos(x))(1+sin(x)cos(x))sin^2(x)-cos^2(x) \
& = frac1-sin(x)cos(x)-2sin^2(x)cos^2(x)sin^2(x)-cos^2(x) \
& = fracsin^2(x)sin^2(x)fraccsc^2(x)-cot(x)-2cos^2(x)1-cot^2(x).
endalign
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Note that
beginalign
sin^3(x)-cos^3(x) & = (sin(x)-cos(x))(sin^2(x)+cos^2(x)+sin(x)cos(x)) \
& =(sin(x)-cos(x))(1+sin(x)cos(x)).
endalign
Therefore,
beginalign
fracsin^3(x)-cos^3(x)sin(x)+cos(x) & = frac(sin(x)-cos(x))(1+sin(x)cos(x))sin(x)+cos(x) \
& = frac(sin(x)-cos(x))^2(1+sin(x)cos(x))sin^2(x)-cos^2(x) \
& = frac(1-2sin(x)cos(x))(1+sin(x)cos(x))sin^2(x)-cos^2(x) \
& = frac1-sin(x)cos(x)-2sin^2(x)cos^2(x)sin^2(x)-cos^2(x) \
& = fracsin^2(x)sin^2(x)fraccsc^2(x)-cot(x)-2cos^2(x)1-cot^2(x).
endalign
Note that
beginalign
sin^3(x)-cos^3(x) & = (sin(x)-cos(x))(sin^2(x)+cos^2(x)+sin(x)cos(x)) \
& =(sin(x)-cos(x))(1+sin(x)cos(x)).
endalign
Therefore,
beginalign
fracsin^3(x)-cos^3(x)sin(x)+cos(x) & = frac(sin(x)-cos(x))(1+sin(x)cos(x))sin(x)+cos(x) \
& = frac(sin(x)-cos(x))^2(1+sin(x)cos(x))sin^2(x)-cos^2(x) \
& = frac(1-2sin(x)cos(x))(1+sin(x)cos(x))sin^2(x)-cos^2(x) \
& = frac1-sin(x)cos(x)-2sin^2(x)cos^2(x)sin^2(x)-cos^2(x) \
& = fracsin^2(x)sin^2(x)fraccsc^2(x)-cot(x)-2cos^2(x)1-cot^2(x).
endalign
answered Jul 23 at 20:44
Math Lover
12.3k21232
12.3k21232
add a comment |Â
add a comment |Â
up vote
1
down vote
I'd start with the right-hand side:
beginalign
fraccsc^2x-cot x-2cos^2x1-cot^2x
&=fracdfrac1sin^2x-dfraccos xsin x-2cos^2x1-dfraccos^2xsin^2x
\[6px]
&=frac1-sin xcos x-2cos^2xsin^2xsin^2x-cos^2x
\[6px]
&=frac(sin^2x+cos^2x)^2-(sin^2x+cos^2x)sin xcos x-2sin^2xcos^2xsin^2x-cos^2x
\[6px]
&=fracsin^4x-sin^3xcos x-sin xcos^3x+cos^4xsin^2x-cos^2x
\[6px]
&=fracsin^3x(sin x-cos x)-cos^3x(sin x-cos x)sin^2x-cos^2x
\[6px]
&=frac(sin^3x-cos^3x)(sin x-cos x)(sin x+cos x)(sin x-cos x)
\[6px]
&=fracsin^3x-cos^3xsin x+cos x
endalign
The trick is to âÂÂmake the numerator homogeneousâÂÂ.
add a comment |Â
up vote
1
down vote
I'd start with the right-hand side:
beginalign
fraccsc^2x-cot x-2cos^2x1-cot^2x
&=fracdfrac1sin^2x-dfraccos xsin x-2cos^2x1-dfraccos^2xsin^2x
\[6px]
&=frac1-sin xcos x-2cos^2xsin^2xsin^2x-cos^2x
\[6px]
&=frac(sin^2x+cos^2x)^2-(sin^2x+cos^2x)sin xcos x-2sin^2xcos^2xsin^2x-cos^2x
\[6px]
&=fracsin^4x-sin^3xcos x-sin xcos^3x+cos^4xsin^2x-cos^2x
\[6px]
&=fracsin^3x(sin x-cos x)-cos^3x(sin x-cos x)sin^2x-cos^2x
\[6px]
&=frac(sin^3x-cos^3x)(sin x-cos x)(sin x+cos x)(sin x-cos x)
\[6px]
&=fracsin^3x-cos^3xsin x+cos x
endalign
The trick is to âÂÂmake the numerator homogeneousâÂÂ.
add a comment |Â
up vote
1
down vote
up vote
1
down vote
I'd start with the right-hand side:
beginalign
fraccsc^2x-cot x-2cos^2x1-cot^2x
&=fracdfrac1sin^2x-dfraccos xsin x-2cos^2x1-dfraccos^2xsin^2x
\[6px]
&=frac1-sin xcos x-2cos^2xsin^2xsin^2x-cos^2x
\[6px]
&=frac(sin^2x+cos^2x)^2-(sin^2x+cos^2x)sin xcos x-2sin^2xcos^2xsin^2x-cos^2x
\[6px]
&=fracsin^4x-sin^3xcos x-sin xcos^3x+cos^4xsin^2x-cos^2x
\[6px]
&=fracsin^3x(sin x-cos x)-cos^3x(sin x-cos x)sin^2x-cos^2x
\[6px]
&=frac(sin^3x-cos^3x)(sin x-cos x)(sin x+cos x)(sin x-cos x)
\[6px]
&=fracsin^3x-cos^3xsin x+cos x
endalign
The trick is to âÂÂmake the numerator homogeneousâÂÂ.
I'd start with the right-hand side:
beginalign
fraccsc^2x-cot x-2cos^2x1-cot^2x
&=fracdfrac1sin^2x-dfraccos xsin x-2cos^2x1-dfraccos^2xsin^2x
\[6px]
&=frac1-sin xcos x-2cos^2xsin^2xsin^2x-cos^2x
\[6px]
&=frac(sin^2x+cos^2x)^2-(sin^2x+cos^2x)sin xcos x-2sin^2xcos^2xsin^2x-cos^2x
\[6px]
&=fracsin^4x-sin^3xcos x-sin xcos^3x+cos^4xsin^2x-cos^2x
\[6px]
&=fracsin^3x(sin x-cos x)-cos^3x(sin x-cos x)sin^2x-cos^2x
\[6px]
&=frac(sin^3x-cos^3x)(sin x-cos x)(sin x+cos x)(sin x-cos x)
\[6px]
&=fracsin^3x-cos^3xsin x+cos x
endalign
The trick is to âÂÂmake the numerator homogeneousâÂÂ.
answered Jul 23 at 21:01
egreg
164k1180187
164k1180187
add a comment |Â
add a comment |Â
up vote
0
down vote
Use that $$sin^2(x)(1-cot(x)^2)=sin(x)^2-cos(x)^2$$
then we get
$$fracsin(x)^3-cos(x)^3sin(x)+cos(x)=frac2cos(x)^4-2cos(x)^2-sin(x)cos(x)+1(sin(x)+cos(x))(sin(x)-cos(x))$$
and then use that
$$sin(x)^3-cos(x)^3=(sin(x)-cos(x))(sin(x)^2+sin(x)cos(x)+cos(x)^2)$$
add a comment |Â
up vote
0
down vote
Use that $$sin^2(x)(1-cot(x)^2)=sin(x)^2-cos(x)^2$$
then we get
$$fracsin(x)^3-cos(x)^3sin(x)+cos(x)=frac2cos(x)^4-2cos(x)^2-sin(x)cos(x)+1(sin(x)+cos(x))(sin(x)-cos(x))$$
and then use that
$$sin(x)^3-cos(x)^3=(sin(x)-cos(x))(sin(x)^2+sin(x)cos(x)+cos(x)^2)$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Use that $$sin^2(x)(1-cot(x)^2)=sin(x)^2-cos(x)^2$$
then we get
$$fracsin(x)^3-cos(x)^3sin(x)+cos(x)=frac2cos(x)^4-2cos(x)^2-sin(x)cos(x)+1(sin(x)+cos(x))(sin(x)-cos(x))$$
and then use that
$$sin(x)^3-cos(x)^3=(sin(x)-cos(x))(sin(x)^2+sin(x)cos(x)+cos(x)^2)$$
Use that $$sin^2(x)(1-cot(x)^2)=sin(x)^2-cos(x)^2$$
then we get
$$fracsin(x)^3-cos(x)^3sin(x)+cos(x)=frac2cos(x)^4-2cos(x)^2-sin(x)cos(x)+1(sin(x)+cos(x))(sin(x)-cos(x))$$
and then use that
$$sin(x)^3-cos(x)^3=(sin(x)-cos(x))(sin(x)^2+sin(x)cos(x)+cos(x)^2)$$
edited Jul 23 at 20:46
answered Jul 23 at 20:40
Dr. Sonnhard Graubner
66.7k32659
66.7k32659
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2860753%2fproving-a-long-ish-trig-identity%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
2
Start with the RHS, convert everything to sin and cos, it is easier to work that way. Then simplify.
â Isko10986
Jul 23 at 20:31