Proving a long-ish trig identity

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Prove this identity without using cross multiplication by manipulating one side using trig identities:



$$fracsin^3x-cos^3xsin x+cos x = fraccsc^2x-cot x-2cos^2x1-cot^2x$$



I first started off on the LHS and managed to get the denominator to become $1-cot^2x$ by multiplying by $sin x - cos x$ and then dividing by $sin^2 x$, but from there I had no idea how to continue.







share|cite|improve this question

















  • 2




    Start with the RHS, convert everything to sin and cos, it is easier to work that way. Then simplify.
    – Isko10986
    Jul 23 at 20:31














up vote
0
down vote

favorite












Prove this identity without using cross multiplication by manipulating one side using trig identities:



$$fracsin^3x-cos^3xsin x+cos x = fraccsc^2x-cot x-2cos^2x1-cot^2x$$



I first started off on the LHS and managed to get the denominator to become $1-cot^2x$ by multiplying by $sin x - cos x$ and then dividing by $sin^2 x$, but from there I had no idea how to continue.







share|cite|improve this question

















  • 2




    Start with the RHS, convert everything to sin and cos, it is easier to work that way. Then simplify.
    – Isko10986
    Jul 23 at 20:31












up vote
0
down vote

favorite









up vote
0
down vote

favorite











Prove this identity without using cross multiplication by manipulating one side using trig identities:



$$fracsin^3x-cos^3xsin x+cos x = fraccsc^2x-cot x-2cos^2x1-cot^2x$$



I first started off on the LHS and managed to get the denominator to become $1-cot^2x$ by multiplying by $sin x - cos x$ and then dividing by $sin^2 x$, but from there I had no idea how to continue.







share|cite|improve this question













Prove this identity without using cross multiplication by manipulating one side using trig identities:



$$fracsin^3x-cos^3xsin x+cos x = fraccsc^2x-cot x-2cos^2x1-cot^2x$$



I first started off on the LHS and managed to get the denominator to become $1-cot^2x$ by multiplying by $sin x - cos x$ and then dividing by $sin^2 x$, but from there I had no idea how to continue.









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 23 at 20:34









Bernard

110k635103




110k635103









asked Jul 23 at 20:28









Jessca

32




32







  • 2




    Start with the RHS, convert everything to sin and cos, it is easier to work that way. Then simplify.
    – Isko10986
    Jul 23 at 20:31












  • 2




    Start with the RHS, convert everything to sin and cos, it is easier to work that way. Then simplify.
    – Isko10986
    Jul 23 at 20:31







2




2




Start with the RHS, convert everything to sin and cos, it is easier to work that way. Then simplify.
– Isko10986
Jul 23 at 20:31




Start with the RHS, convert everything to sin and cos, it is easier to work that way. Then simplify.
– Isko10986
Jul 23 at 20:31










4 Answers
4






active

oldest

votes

















up vote
2
down vote



accepted










Let $s= sin x $ and $c=cos x$
begineqnarray*
fracs^3-c^3s+c fracs-cs-c = fracs^4+c^4-sc(s^2+c^2)s^2-c^2.
endeqnarray*
Now $s^4+c^4=(s^2+c^2)^2-2s^2 c^2$ and divide top & bottom by $s^2$
begineqnarray*
frac1/s^2-c/s-2c^21-c^2/s^2 .
endeqnarray*






share|cite|improve this answer




























    up vote
    1
    down vote













    Note that
    beginalign
    sin^3(x)-cos^3(x) & = (sin(x)-cos(x))(sin^2(x)+cos^2(x)+sin(x)cos(x)) \
    & =(sin(x)-cos(x))(1+sin(x)cos(x)).
    endalign
    Therefore,
    beginalign
    fracsin^3(x)-cos^3(x)sin(x)+cos(x) & = frac(sin(x)-cos(x))(1+sin(x)cos(x))sin(x)+cos(x) \
    & = frac(sin(x)-cos(x))^2(1+sin(x)cos(x))sin^2(x)-cos^2(x) \
    & = frac(1-2sin(x)cos(x))(1+sin(x)cos(x))sin^2(x)-cos^2(x) \
    & = frac1-sin(x)cos(x)-2sin^2(x)cos^2(x)sin^2(x)-cos^2(x) \
    & = fracsin^2(x)sin^2(x)fraccsc^2(x)-cot(x)-2cos^2(x)1-cot^2(x).
    endalign






    share|cite|improve this answer




























      up vote
      1
      down vote













      I'd start with the right-hand side:
      beginalign
      fraccsc^2x-cot x-2cos^2x1-cot^2x
      &=fracdfrac1sin^2x-dfraccos xsin x-2cos^2x1-dfraccos^2xsin^2x
      \[6px]
      &=frac1-sin xcos x-2cos^2xsin^2xsin^2x-cos^2x
      \[6px]
      &=frac(sin^2x+cos^2x)^2-(sin^2x+cos^2x)sin xcos x-2sin^2xcos^2xsin^2x-cos^2x
      \[6px]
      &=fracsin^4x-sin^3xcos x-sin xcos^3x+cos^4xsin^2x-cos^2x
      \[6px]
      &=fracsin^3x(sin x-cos x)-cos^3x(sin x-cos x)sin^2x-cos^2x
      \[6px]
      &=frac(sin^3x-cos^3x)(sin x-cos x)(sin x+cos x)(sin x-cos x)
      \[6px]
      &=fracsin^3x-cos^3xsin x+cos x
      endalign
      The trick is to “make the numerator homogeneous”.






      share|cite|improve this answer




























        up vote
        0
        down vote













        Use that $$sin^2(x)(1-cot(x)^2)=sin(x)^2-cos(x)^2$$
        then we get



        $$fracsin(x)^3-cos(x)^3sin(x)+cos(x)=frac2cos(x)^4-2cos(x)^2-sin(x)cos(x)+1(sin(x)+cos(x))(sin(x)-cos(x))$$
        and then use that
        $$sin(x)^3-cos(x)^3=(sin(x)-cos(x))(sin(x)^2+sin(x)cos(x)+cos(x)^2)$$






        share|cite|improve this answer























          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2860753%2fproving-a-long-ish-trig-identity%23new-answer', 'question_page');

          );

          Post as a guest






























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          2
          down vote



          accepted










          Let $s= sin x $ and $c=cos x$
          begineqnarray*
          fracs^3-c^3s+c fracs-cs-c = fracs^4+c^4-sc(s^2+c^2)s^2-c^2.
          endeqnarray*
          Now $s^4+c^4=(s^2+c^2)^2-2s^2 c^2$ and divide top & bottom by $s^2$
          begineqnarray*
          frac1/s^2-c/s-2c^21-c^2/s^2 .
          endeqnarray*






          share|cite|improve this answer

























            up vote
            2
            down vote



            accepted










            Let $s= sin x $ and $c=cos x$
            begineqnarray*
            fracs^3-c^3s+c fracs-cs-c = fracs^4+c^4-sc(s^2+c^2)s^2-c^2.
            endeqnarray*
            Now $s^4+c^4=(s^2+c^2)^2-2s^2 c^2$ and divide top & bottom by $s^2$
            begineqnarray*
            frac1/s^2-c/s-2c^21-c^2/s^2 .
            endeqnarray*






            share|cite|improve this answer























              up vote
              2
              down vote



              accepted







              up vote
              2
              down vote



              accepted






              Let $s= sin x $ and $c=cos x$
              begineqnarray*
              fracs^3-c^3s+c fracs-cs-c = fracs^4+c^4-sc(s^2+c^2)s^2-c^2.
              endeqnarray*
              Now $s^4+c^4=(s^2+c^2)^2-2s^2 c^2$ and divide top & bottom by $s^2$
              begineqnarray*
              frac1/s^2-c/s-2c^21-c^2/s^2 .
              endeqnarray*






              share|cite|improve this answer













              Let $s= sin x $ and $c=cos x$
              begineqnarray*
              fracs^3-c^3s+c fracs-cs-c = fracs^4+c^4-sc(s^2+c^2)s^2-c^2.
              endeqnarray*
              Now $s^4+c^4=(s^2+c^2)^2-2s^2 c^2$ and divide top & bottom by $s^2$
              begineqnarray*
              frac1/s^2-c/s-2c^21-c^2/s^2 .
              endeqnarray*







              share|cite|improve this answer













              share|cite|improve this answer



              share|cite|improve this answer











              answered Jul 23 at 20:38









              Donald Splutterwit

              21.3k21243




              21.3k21243




















                  up vote
                  1
                  down vote













                  Note that
                  beginalign
                  sin^3(x)-cos^3(x) & = (sin(x)-cos(x))(sin^2(x)+cos^2(x)+sin(x)cos(x)) \
                  & =(sin(x)-cos(x))(1+sin(x)cos(x)).
                  endalign
                  Therefore,
                  beginalign
                  fracsin^3(x)-cos^3(x)sin(x)+cos(x) & = frac(sin(x)-cos(x))(1+sin(x)cos(x))sin(x)+cos(x) \
                  & = frac(sin(x)-cos(x))^2(1+sin(x)cos(x))sin^2(x)-cos^2(x) \
                  & = frac(1-2sin(x)cos(x))(1+sin(x)cos(x))sin^2(x)-cos^2(x) \
                  & = frac1-sin(x)cos(x)-2sin^2(x)cos^2(x)sin^2(x)-cos^2(x) \
                  & = fracsin^2(x)sin^2(x)fraccsc^2(x)-cot(x)-2cos^2(x)1-cot^2(x).
                  endalign






                  share|cite|improve this answer

























                    up vote
                    1
                    down vote













                    Note that
                    beginalign
                    sin^3(x)-cos^3(x) & = (sin(x)-cos(x))(sin^2(x)+cos^2(x)+sin(x)cos(x)) \
                    & =(sin(x)-cos(x))(1+sin(x)cos(x)).
                    endalign
                    Therefore,
                    beginalign
                    fracsin^3(x)-cos^3(x)sin(x)+cos(x) & = frac(sin(x)-cos(x))(1+sin(x)cos(x))sin(x)+cos(x) \
                    & = frac(sin(x)-cos(x))^2(1+sin(x)cos(x))sin^2(x)-cos^2(x) \
                    & = frac(1-2sin(x)cos(x))(1+sin(x)cos(x))sin^2(x)-cos^2(x) \
                    & = frac1-sin(x)cos(x)-2sin^2(x)cos^2(x)sin^2(x)-cos^2(x) \
                    & = fracsin^2(x)sin^2(x)fraccsc^2(x)-cot(x)-2cos^2(x)1-cot^2(x).
                    endalign






                    share|cite|improve this answer























                      up vote
                      1
                      down vote










                      up vote
                      1
                      down vote









                      Note that
                      beginalign
                      sin^3(x)-cos^3(x) & = (sin(x)-cos(x))(sin^2(x)+cos^2(x)+sin(x)cos(x)) \
                      & =(sin(x)-cos(x))(1+sin(x)cos(x)).
                      endalign
                      Therefore,
                      beginalign
                      fracsin^3(x)-cos^3(x)sin(x)+cos(x) & = frac(sin(x)-cos(x))(1+sin(x)cos(x))sin(x)+cos(x) \
                      & = frac(sin(x)-cos(x))^2(1+sin(x)cos(x))sin^2(x)-cos^2(x) \
                      & = frac(1-2sin(x)cos(x))(1+sin(x)cos(x))sin^2(x)-cos^2(x) \
                      & = frac1-sin(x)cos(x)-2sin^2(x)cos^2(x)sin^2(x)-cos^2(x) \
                      & = fracsin^2(x)sin^2(x)fraccsc^2(x)-cot(x)-2cos^2(x)1-cot^2(x).
                      endalign






                      share|cite|improve this answer













                      Note that
                      beginalign
                      sin^3(x)-cos^3(x) & = (sin(x)-cos(x))(sin^2(x)+cos^2(x)+sin(x)cos(x)) \
                      & =(sin(x)-cos(x))(1+sin(x)cos(x)).
                      endalign
                      Therefore,
                      beginalign
                      fracsin^3(x)-cos^3(x)sin(x)+cos(x) & = frac(sin(x)-cos(x))(1+sin(x)cos(x))sin(x)+cos(x) \
                      & = frac(sin(x)-cos(x))^2(1+sin(x)cos(x))sin^2(x)-cos^2(x) \
                      & = frac(1-2sin(x)cos(x))(1+sin(x)cos(x))sin^2(x)-cos^2(x) \
                      & = frac1-sin(x)cos(x)-2sin^2(x)cos^2(x)sin^2(x)-cos^2(x) \
                      & = fracsin^2(x)sin^2(x)fraccsc^2(x)-cot(x)-2cos^2(x)1-cot^2(x).
                      endalign







                      share|cite|improve this answer













                      share|cite|improve this answer



                      share|cite|improve this answer











                      answered Jul 23 at 20:44









                      Math Lover

                      12.3k21232




                      12.3k21232




















                          up vote
                          1
                          down vote













                          I'd start with the right-hand side:
                          beginalign
                          fraccsc^2x-cot x-2cos^2x1-cot^2x
                          &=fracdfrac1sin^2x-dfraccos xsin x-2cos^2x1-dfraccos^2xsin^2x
                          \[6px]
                          &=frac1-sin xcos x-2cos^2xsin^2xsin^2x-cos^2x
                          \[6px]
                          &=frac(sin^2x+cos^2x)^2-(sin^2x+cos^2x)sin xcos x-2sin^2xcos^2xsin^2x-cos^2x
                          \[6px]
                          &=fracsin^4x-sin^3xcos x-sin xcos^3x+cos^4xsin^2x-cos^2x
                          \[6px]
                          &=fracsin^3x(sin x-cos x)-cos^3x(sin x-cos x)sin^2x-cos^2x
                          \[6px]
                          &=frac(sin^3x-cos^3x)(sin x-cos x)(sin x+cos x)(sin x-cos x)
                          \[6px]
                          &=fracsin^3x-cos^3xsin x+cos x
                          endalign
                          The trick is to “make the numerator homogeneous”.






                          share|cite|improve this answer

























                            up vote
                            1
                            down vote













                            I'd start with the right-hand side:
                            beginalign
                            fraccsc^2x-cot x-2cos^2x1-cot^2x
                            &=fracdfrac1sin^2x-dfraccos xsin x-2cos^2x1-dfraccos^2xsin^2x
                            \[6px]
                            &=frac1-sin xcos x-2cos^2xsin^2xsin^2x-cos^2x
                            \[6px]
                            &=frac(sin^2x+cos^2x)^2-(sin^2x+cos^2x)sin xcos x-2sin^2xcos^2xsin^2x-cos^2x
                            \[6px]
                            &=fracsin^4x-sin^3xcos x-sin xcos^3x+cos^4xsin^2x-cos^2x
                            \[6px]
                            &=fracsin^3x(sin x-cos x)-cos^3x(sin x-cos x)sin^2x-cos^2x
                            \[6px]
                            &=frac(sin^3x-cos^3x)(sin x-cos x)(sin x+cos x)(sin x-cos x)
                            \[6px]
                            &=fracsin^3x-cos^3xsin x+cos x
                            endalign
                            The trick is to “make the numerator homogeneous”.






                            share|cite|improve this answer























                              up vote
                              1
                              down vote










                              up vote
                              1
                              down vote









                              I'd start with the right-hand side:
                              beginalign
                              fraccsc^2x-cot x-2cos^2x1-cot^2x
                              &=fracdfrac1sin^2x-dfraccos xsin x-2cos^2x1-dfraccos^2xsin^2x
                              \[6px]
                              &=frac1-sin xcos x-2cos^2xsin^2xsin^2x-cos^2x
                              \[6px]
                              &=frac(sin^2x+cos^2x)^2-(sin^2x+cos^2x)sin xcos x-2sin^2xcos^2xsin^2x-cos^2x
                              \[6px]
                              &=fracsin^4x-sin^3xcos x-sin xcos^3x+cos^4xsin^2x-cos^2x
                              \[6px]
                              &=fracsin^3x(sin x-cos x)-cos^3x(sin x-cos x)sin^2x-cos^2x
                              \[6px]
                              &=frac(sin^3x-cos^3x)(sin x-cos x)(sin x+cos x)(sin x-cos x)
                              \[6px]
                              &=fracsin^3x-cos^3xsin x+cos x
                              endalign
                              The trick is to “make the numerator homogeneous”.






                              share|cite|improve this answer













                              I'd start with the right-hand side:
                              beginalign
                              fraccsc^2x-cot x-2cos^2x1-cot^2x
                              &=fracdfrac1sin^2x-dfraccos xsin x-2cos^2x1-dfraccos^2xsin^2x
                              \[6px]
                              &=frac1-sin xcos x-2cos^2xsin^2xsin^2x-cos^2x
                              \[6px]
                              &=frac(sin^2x+cos^2x)^2-(sin^2x+cos^2x)sin xcos x-2sin^2xcos^2xsin^2x-cos^2x
                              \[6px]
                              &=fracsin^4x-sin^3xcos x-sin xcos^3x+cos^4xsin^2x-cos^2x
                              \[6px]
                              &=fracsin^3x(sin x-cos x)-cos^3x(sin x-cos x)sin^2x-cos^2x
                              \[6px]
                              &=frac(sin^3x-cos^3x)(sin x-cos x)(sin x+cos x)(sin x-cos x)
                              \[6px]
                              &=fracsin^3x-cos^3xsin x+cos x
                              endalign
                              The trick is to “make the numerator homogeneous”.







                              share|cite|improve this answer













                              share|cite|improve this answer



                              share|cite|improve this answer











                              answered Jul 23 at 21:01









                              egreg

                              164k1180187




                              164k1180187




















                                  up vote
                                  0
                                  down vote













                                  Use that $$sin^2(x)(1-cot(x)^2)=sin(x)^2-cos(x)^2$$
                                  then we get



                                  $$fracsin(x)^3-cos(x)^3sin(x)+cos(x)=frac2cos(x)^4-2cos(x)^2-sin(x)cos(x)+1(sin(x)+cos(x))(sin(x)-cos(x))$$
                                  and then use that
                                  $$sin(x)^3-cos(x)^3=(sin(x)-cos(x))(sin(x)^2+sin(x)cos(x)+cos(x)^2)$$






                                  share|cite|improve this answer



























                                    up vote
                                    0
                                    down vote













                                    Use that $$sin^2(x)(1-cot(x)^2)=sin(x)^2-cos(x)^2$$
                                    then we get



                                    $$fracsin(x)^3-cos(x)^3sin(x)+cos(x)=frac2cos(x)^4-2cos(x)^2-sin(x)cos(x)+1(sin(x)+cos(x))(sin(x)-cos(x))$$
                                    and then use that
                                    $$sin(x)^3-cos(x)^3=(sin(x)-cos(x))(sin(x)^2+sin(x)cos(x)+cos(x)^2)$$






                                    share|cite|improve this answer

























                                      up vote
                                      0
                                      down vote










                                      up vote
                                      0
                                      down vote









                                      Use that $$sin^2(x)(1-cot(x)^2)=sin(x)^2-cos(x)^2$$
                                      then we get



                                      $$fracsin(x)^3-cos(x)^3sin(x)+cos(x)=frac2cos(x)^4-2cos(x)^2-sin(x)cos(x)+1(sin(x)+cos(x))(sin(x)-cos(x))$$
                                      and then use that
                                      $$sin(x)^3-cos(x)^3=(sin(x)-cos(x))(sin(x)^2+sin(x)cos(x)+cos(x)^2)$$






                                      share|cite|improve this answer















                                      Use that $$sin^2(x)(1-cot(x)^2)=sin(x)^2-cos(x)^2$$
                                      then we get



                                      $$fracsin(x)^3-cos(x)^3sin(x)+cos(x)=frac2cos(x)^4-2cos(x)^2-sin(x)cos(x)+1(sin(x)+cos(x))(sin(x)-cos(x))$$
                                      and then use that
                                      $$sin(x)^3-cos(x)^3=(sin(x)-cos(x))(sin(x)^2+sin(x)cos(x)+cos(x)^2)$$







                                      share|cite|improve this answer















                                      share|cite|improve this answer



                                      share|cite|improve this answer








                                      edited Jul 23 at 20:46


























                                      answered Jul 23 at 20:40









                                      Dr. Sonnhard Graubner

                                      66.7k32659




                                      66.7k32659






















                                           

                                          draft saved


                                          draft discarded


























                                           


                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function ()
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2860753%2fproving-a-long-ish-trig-identity%23new-answer', 'question_page');

                                          );

                                          Post as a guest













































































                                          Comments

                                          Popular posts from this blog

                                          What is the equation of a 3D cone with generalised tilt?

                                          Color the edges and diagonals of a regular polygon

                                          Relationship between determinant of matrix and determinant of adjoint?