Solutions of two linear programming

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite
1












Let $betaequiv (beta_0, beta_1)in mathcalBsubset mathbbR^2$ with $mathcalB$ compact. $beta$ is a known vector of parameters.



Let $P_0, P_1, F_0, F_1$ be know parameters, each in $[0,1]$.



Consider the following linear programming problems.



beginaligned
underlinep(beta)equiv min_a,b & [P_0-a]F_0+ [b - P_1]F_1 \
&text s.t. \
& 1) text ain [0,1]text, bin [0,1]\
& 2) text Q_0: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_0(0)=frac12text, Q_0(beta_0) = P_0 text, Q_0( beta_0+beta_1)= a\
& text is weakly increasing\
& 3) text Q_1: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_1(0)=frac12text, Q_1(beta_0) = b text, Q_1( beta_0+beta_1)= P_1\
&text is weakly increasing
endaligned



and



beginaligned
barp(beta)equiv max_a,b & [P_0-a]F_0+ [b - P_1]F_1 \
&text s.t. \
& 1) text ain [0,1]text, bin [0,1]\
& 2) text Q_0: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_0(0)=frac12text, Q_0(beta_0) = P_0 text, Q_0( beta_0+beta_1)= a\
& text is weakly increasing\
& 3) text Q_1: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_1(0)=frac12text, Q_1(beta_0) = b text, Q_1( beta_0+beta_1)= P_1\
&text is weakly increasing
endaligned




Question: Is it true that $forall p in [underlinep(beta),barp(beta)]$, there exists $tildebetain mathcalB$ such that



beginaligned
& 1) text [P_0-a]F_0+ [b - P_1]F_1 = p text has a solution wrto $a,b$\
& 2) text ain [0,1]text, bin [0,1]\
& 3) text Q_0: 0, tildebeta_0, tildebeta_0+tildebeta_1 rightarrow [0,1] text with Q_0(0)=frac12text, Q_0(tildebeta_0) = P_0 text, Q_0( tildebeta_0+tildebeta_1)= a\
& text is weakly increasing\
& 4) text Q_1: 0, tildebeta_0, tildebeta_0+tildebeta_1 rightarrow [0,1] text with Q_1(0)=frac12text, Q_1(tildebeta_0) = b text, Q_1( tildebeta_0+tildebeta_1)= P_1\
&text is weakly increasing
endaligned
? Why yes or not? I think the answer should be yes, but your hint would be very appreciated.







share|cite|improve this question























    up vote
    2
    down vote

    favorite
    1












    Let $betaequiv (beta_0, beta_1)in mathcalBsubset mathbbR^2$ with $mathcalB$ compact. $beta$ is a known vector of parameters.



    Let $P_0, P_1, F_0, F_1$ be know parameters, each in $[0,1]$.



    Consider the following linear programming problems.



    beginaligned
    underlinep(beta)equiv min_a,b & [P_0-a]F_0+ [b - P_1]F_1 \
    &text s.t. \
    & 1) text ain [0,1]text, bin [0,1]\
    & 2) text Q_0: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_0(0)=frac12text, Q_0(beta_0) = P_0 text, Q_0( beta_0+beta_1)= a\
    & text is weakly increasing\
    & 3) text Q_1: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_1(0)=frac12text, Q_1(beta_0) = b text, Q_1( beta_0+beta_1)= P_1\
    &text is weakly increasing
    endaligned



    and



    beginaligned
    barp(beta)equiv max_a,b & [P_0-a]F_0+ [b - P_1]F_1 \
    &text s.t. \
    & 1) text ain [0,1]text, bin [0,1]\
    & 2) text Q_0: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_0(0)=frac12text, Q_0(beta_0) = P_0 text, Q_0( beta_0+beta_1)= a\
    & text is weakly increasing\
    & 3) text Q_1: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_1(0)=frac12text, Q_1(beta_0) = b text, Q_1( beta_0+beta_1)= P_1\
    &text is weakly increasing
    endaligned




    Question: Is it true that $forall p in [underlinep(beta),barp(beta)]$, there exists $tildebetain mathcalB$ such that



    beginaligned
    & 1) text [P_0-a]F_0+ [b - P_1]F_1 = p text has a solution wrto $a,b$\
    & 2) text ain [0,1]text, bin [0,1]\
    & 3) text Q_0: 0, tildebeta_0, tildebeta_0+tildebeta_1 rightarrow [0,1] text with Q_0(0)=frac12text, Q_0(tildebeta_0) = P_0 text, Q_0( tildebeta_0+tildebeta_1)= a\
    & text is weakly increasing\
    & 4) text Q_1: 0, tildebeta_0, tildebeta_0+tildebeta_1 rightarrow [0,1] text with Q_1(0)=frac12text, Q_1(tildebeta_0) = b text, Q_1( tildebeta_0+tildebeta_1)= P_1\
    &text is weakly increasing
    endaligned
    ? Why yes or not? I think the answer should be yes, but your hint would be very appreciated.







    share|cite|improve this question





















      up vote
      2
      down vote

      favorite
      1









      up vote
      2
      down vote

      favorite
      1






      1





      Let $betaequiv (beta_0, beta_1)in mathcalBsubset mathbbR^2$ with $mathcalB$ compact. $beta$ is a known vector of parameters.



      Let $P_0, P_1, F_0, F_1$ be know parameters, each in $[0,1]$.



      Consider the following linear programming problems.



      beginaligned
      underlinep(beta)equiv min_a,b & [P_0-a]F_0+ [b - P_1]F_1 \
      &text s.t. \
      & 1) text ain [0,1]text, bin [0,1]\
      & 2) text Q_0: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_0(0)=frac12text, Q_0(beta_0) = P_0 text, Q_0( beta_0+beta_1)= a\
      & text is weakly increasing\
      & 3) text Q_1: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_1(0)=frac12text, Q_1(beta_0) = b text, Q_1( beta_0+beta_1)= P_1\
      &text is weakly increasing
      endaligned



      and



      beginaligned
      barp(beta)equiv max_a,b & [P_0-a]F_0+ [b - P_1]F_1 \
      &text s.t. \
      & 1) text ain [0,1]text, bin [0,1]\
      & 2) text Q_0: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_0(0)=frac12text, Q_0(beta_0) = P_0 text, Q_0( beta_0+beta_1)= a\
      & text is weakly increasing\
      & 3) text Q_1: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_1(0)=frac12text, Q_1(beta_0) = b text, Q_1( beta_0+beta_1)= P_1\
      &text is weakly increasing
      endaligned




      Question: Is it true that $forall p in [underlinep(beta),barp(beta)]$, there exists $tildebetain mathcalB$ such that



      beginaligned
      & 1) text [P_0-a]F_0+ [b - P_1]F_1 = p text has a solution wrto $a,b$\
      & 2) text ain [0,1]text, bin [0,1]\
      & 3) text Q_0: 0, tildebeta_0, tildebeta_0+tildebeta_1 rightarrow [0,1] text with Q_0(0)=frac12text, Q_0(tildebeta_0) = P_0 text, Q_0( tildebeta_0+tildebeta_1)= a\
      & text is weakly increasing\
      & 4) text Q_1: 0, tildebeta_0, tildebeta_0+tildebeta_1 rightarrow [0,1] text with Q_1(0)=frac12text, Q_1(tildebeta_0) = b text, Q_1( tildebeta_0+tildebeta_1)= P_1\
      &text is weakly increasing
      endaligned
      ? Why yes or not? I think the answer should be yes, but your hint would be very appreciated.







      share|cite|improve this question











      Let $betaequiv (beta_0, beta_1)in mathcalBsubset mathbbR^2$ with $mathcalB$ compact. $beta$ is a known vector of parameters.



      Let $P_0, P_1, F_0, F_1$ be know parameters, each in $[0,1]$.



      Consider the following linear programming problems.



      beginaligned
      underlinep(beta)equiv min_a,b & [P_0-a]F_0+ [b - P_1]F_1 \
      &text s.t. \
      & 1) text ain [0,1]text, bin [0,1]\
      & 2) text Q_0: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_0(0)=frac12text, Q_0(beta_0) = P_0 text, Q_0( beta_0+beta_1)= a\
      & text is weakly increasing\
      & 3) text Q_1: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_1(0)=frac12text, Q_1(beta_0) = b text, Q_1( beta_0+beta_1)= P_1\
      &text is weakly increasing
      endaligned



      and



      beginaligned
      barp(beta)equiv max_a,b & [P_0-a]F_0+ [b - P_1]F_1 \
      &text s.t. \
      & 1) text ain [0,1]text, bin [0,1]\
      & 2) text Q_0: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_0(0)=frac12text, Q_0(beta_0) = P_0 text, Q_0( beta_0+beta_1)= a\
      & text is weakly increasing\
      & 3) text Q_1: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_1(0)=frac12text, Q_1(beta_0) = b text, Q_1( beta_0+beta_1)= P_1\
      &text is weakly increasing
      endaligned




      Question: Is it true that $forall p in [underlinep(beta),barp(beta)]$, there exists $tildebetain mathcalB$ such that



      beginaligned
      & 1) text [P_0-a]F_0+ [b - P_1]F_1 = p text has a solution wrto $a,b$\
      & 2) text ain [0,1]text, bin [0,1]\
      & 3) text Q_0: 0, tildebeta_0, tildebeta_0+tildebeta_1 rightarrow [0,1] text with Q_0(0)=frac12text, Q_0(tildebeta_0) = P_0 text, Q_0( tildebeta_0+tildebeta_1)= a\
      & text is weakly increasing\
      & 4) text Q_1: 0, tildebeta_0, tildebeta_0+tildebeta_1 rightarrow [0,1] text with Q_1(0)=frac12text, Q_1(tildebeta_0) = b text, Q_1( tildebeta_0+tildebeta_1)= P_1\
      &text is weakly increasing
      endaligned
      ? Why yes or not? I think the answer should be yes, but your hint would be very appreciated.









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked Jul 23 at 21:56









      TEX

      2419




      2419

























          active

          oldest

          votes











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2860817%2fsolutions-of-two-linear-programming%23new-answer', 'question_page');

          );

          Post as a guest



































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes










           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2860817%2fsolutions-of-two-linear-programming%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What is the equation of a 3D cone with generalised tilt?

          Color the edges and diagonals of a regular polygon

          Relationship between determinant of matrix and determinant of adjoint?