Solutions of two linear programming
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
Let $betaequiv (beta_0, beta_1)in mathcalBsubset mathbbR^2$ with $mathcalB$ compact. $beta$ is a known vector of parameters.
Let $P_0, P_1, F_0, F_1$ be know parameters, each in $[0,1]$.
Consider the following linear programming problems.
beginaligned
underlinep(beta)equiv min_a,b & [P_0-a]F_0+ [b - P_1]F_1 \
&text s.t. \
& 1) text ain [0,1]text, bin [0,1]\
& 2) text Q_0: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_0(0)=frac12text, Q_0(beta_0) = P_0 text, Q_0( beta_0+beta_1)= a\
& text is weakly increasing\
& 3) text Q_1: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_1(0)=frac12text, Q_1(beta_0) = b text, Q_1( beta_0+beta_1)= P_1\
&text is weakly increasing
endaligned
and
beginaligned
barp(beta)equiv max_a,b & [P_0-a]F_0+ [b - P_1]F_1 \
&text s.t. \
& 1) text ain [0,1]text, bin [0,1]\
& 2) text Q_0: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_0(0)=frac12text, Q_0(beta_0) = P_0 text, Q_0( beta_0+beta_1)= a\
& text is weakly increasing\
& 3) text Q_1: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_1(0)=frac12text, Q_1(beta_0) = b text, Q_1( beta_0+beta_1)= P_1\
&text is weakly increasing
endaligned
Question: Is it true that $forall p in [underlinep(beta),barp(beta)]$, there exists $tildebetain mathcalB$ such that
beginaligned
& 1) text [P_0-a]F_0+ [b - P_1]F_1 = p text has a solution wrto $a,b$\
& 2) text ain [0,1]text, bin [0,1]\
& 3) text Q_0: 0, tildebeta_0, tildebeta_0+tildebeta_1 rightarrow [0,1] text with Q_0(0)=frac12text, Q_0(tildebeta_0) = P_0 text, Q_0( tildebeta_0+tildebeta_1)= a\
& text is weakly increasing\
& 4) text Q_1: 0, tildebeta_0, tildebeta_0+tildebeta_1 rightarrow [0,1] text with Q_1(0)=frac12text, Q_1(tildebeta_0) = b text, Q_1( tildebeta_0+tildebeta_1)= P_1\
&text is weakly increasing
endaligned
? Why yes or not? I think the answer should be yes, but your hint would be very appreciated.
linear-algebra optimization linear-programming maxima-minima
add a comment |Â
up vote
2
down vote
favorite
Let $betaequiv (beta_0, beta_1)in mathcalBsubset mathbbR^2$ with $mathcalB$ compact. $beta$ is a known vector of parameters.
Let $P_0, P_1, F_0, F_1$ be know parameters, each in $[0,1]$.
Consider the following linear programming problems.
beginaligned
underlinep(beta)equiv min_a,b & [P_0-a]F_0+ [b - P_1]F_1 \
&text s.t. \
& 1) text ain [0,1]text, bin [0,1]\
& 2) text Q_0: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_0(0)=frac12text, Q_0(beta_0) = P_0 text, Q_0( beta_0+beta_1)= a\
& text is weakly increasing\
& 3) text Q_1: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_1(0)=frac12text, Q_1(beta_0) = b text, Q_1( beta_0+beta_1)= P_1\
&text is weakly increasing
endaligned
and
beginaligned
barp(beta)equiv max_a,b & [P_0-a]F_0+ [b - P_1]F_1 \
&text s.t. \
& 1) text ain [0,1]text, bin [0,1]\
& 2) text Q_0: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_0(0)=frac12text, Q_0(beta_0) = P_0 text, Q_0( beta_0+beta_1)= a\
& text is weakly increasing\
& 3) text Q_1: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_1(0)=frac12text, Q_1(beta_0) = b text, Q_1( beta_0+beta_1)= P_1\
&text is weakly increasing
endaligned
Question: Is it true that $forall p in [underlinep(beta),barp(beta)]$, there exists $tildebetain mathcalB$ such that
beginaligned
& 1) text [P_0-a]F_0+ [b - P_1]F_1 = p text has a solution wrto $a,b$\
& 2) text ain [0,1]text, bin [0,1]\
& 3) text Q_0: 0, tildebeta_0, tildebeta_0+tildebeta_1 rightarrow [0,1] text with Q_0(0)=frac12text, Q_0(tildebeta_0) = P_0 text, Q_0( tildebeta_0+tildebeta_1)= a\
& text is weakly increasing\
& 4) text Q_1: 0, tildebeta_0, tildebeta_0+tildebeta_1 rightarrow [0,1] text with Q_1(0)=frac12text, Q_1(tildebeta_0) = b text, Q_1( tildebeta_0+tildebeta_1)= P_1\
&text is weakly increasing
endaligned
? Why yes or not? I think the answer should be yes, but your hint would be very appreciated.
linear-algebra optimization linear-programming maxima-minima
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Let $betaequiv (beta_0, beta_1)in mathcalBsubset mathbbR^2$ with $mathcalB$ compact. $beta$ is a known vector of parameters.
Let $P_0, P_1, F_0, F_1$ be know parameters, each in $[0,1]$.
Consider the following linear programming problems.
beginaligned
underlinep(beta)equiv min_a,b & [P_0-a]F_0+ [b - P_1]F_1 \
&text s.t. \
& 1) text ain [0,1]text, bin [0,1]\
& 2) text Q_0: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_0(0)=frac12text, Q_0(beta_0) = P_0 text, Q_0( beta_0+beta_1)= a\
& text is weakly increasing\
& 3) text Q_1: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_1(0)=frac12text, Q_1(beta_0) = b text, Q_1( beta_0+beta_1)= P_1\
&text is weakly increasing
endaligned
and
beginaligned
barp(beta)equiv max_a,b & [P_0-a]F_0+ [b - P_1]F_1 \
&text s.t. \
& 1) text ain [0,1]text, bin [0,1]\
& 2) text Q_0: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_0(0)=frac12text, Q_0(beta_0) = P_0 text, Q_0( beta_0+beta_1)= a\
& text is weakly increasing\
& 3) text Q_1: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_1(0)=frac12text, Q_1(beta_0) = b text, Q_1( beta_0+beta_1)= P_1\
&text is weakly increasing
endaligned
Question: Is it true that $forall p in [underlinep(beta),barp(beta)]$, there exists $tildebetain mathcalB$ such that
beginaligned
& 1) text [P_0-a]F_0+ [b - P_1]F_1 = p text has a solution wrto $a,b$\
& 2) text ain [0,1]text, bin [0,1]\
& 3) text Q_0: 0, tildebeta_0, tildebeta_0+tildebeta_1 rightarrow [0,1] text with Q_0(0)=frac12text, Q_0(tildebeta_0) = P_0 text, Q_0( tildebeta_0+tildebeta_1)= a\
& text is weakly increasing\
& 4) text Q_1: 0, tildebeta_0, tildebeta_0+tildebeta_1 rightarrow [0,1] text with Q_1(0)=frac12text, Q_1(tildebeta_0) = b text, Q_1( tildebeta_0+tildebeta_1)= P_1\
&text is weakly increasing
endaligned
? Why yes or not? I think the answer should be yes, but your hint would be very appreciated.
linear-algebra optimization linear-programming maxima-minima
Let $betaequiv (beta_0, beta_1)in mathcalBsubset mathbbR^2$ with $mathcalB$ compact. $beta$ is a known vector of parameters.
Let $P_0, P_1, F_0, F_1$ be know parameters, each in $[0,1]$.
Consider the following linear programming problems.
beginaligned
underlinep(beta)equiv min_a,b & [P_0-a]F_0+ [b - P_1]F_1 \
&text s.t. \
& 1) text ain [0,1]text, bin [0,1]\
& 2) text Q_0: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_0(0)=frac12text, Q_0(beta_0) = P_0 text, Q_0( beta_0+beta_1)= a\
& text is weakly increasing\
& 3) text Q_1: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_1(0)=frac12text, Q_1(beta_0) = b text, Q_1( beta_0+beta_1)= P_1\
&text is weakly increasing
endaligned
and
beginaligned
barp(beta)equiv max_a,b & [P_0-a]F_0+ [b - P_1]F_1 \
&text s.t. \
& 1) text ain [0,1]text, bin [0,1]\
& 2) text Q_0: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_0(0)=frac12text, Q_0(beta_0) = P_0 text, Q_0( beta_0+beta_1)= a\
& text is weakly increasing\
& 3) text Q_1: 0, beta_0, beta_0+beta_1 rightarrow [0,1] text with Q_1(0)=frac12text, Q_1(beta_0) = b text, Q_1( beta_0+beta_1)= P_1\
&text is weakly increasing
endaligned
Question: Is it true that $forall p in [underlinep(beta),barp(beta)]$, there exists $tildebetain mathcalB$ such that
beginaligned
& 1) text [P_0-a]F_0+ [b - P_1]F_1 = p text has a solution wrto $a,b$\
& 2) text ain [0,1]text, bin [0,1]\
& 3) text Q_0: 0, tildebeta_0, tildebeta_0+tildebeta_1 rightarrow [0,1] text with Q_0(0)=frac12text, Q_0(tildebeta_0) = P_0 text, Q_0( tildebeta_0+tildebeta_1)= a\
& text is weakly increasing\
& 4) text Q_1: 0, tildebeta_0, tildebeta_0+tildebeta_1 rightarrow [0,1] text with Q_1(0)=frac12text, Q_1(tildebeta_0) = b text, Q_1( tildebeta_0+tildebeta_1)= P_1\
&text is weakly increasing
endaligned
? Why yes or not? I think the answer should be yes, but your hint would be very appreciated.
linear-algebra optimization linear-programming maxima-minima
asked Jul 23 at 21:56
TEX
2419
2419
add a comment |Â
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2860817%2fsolutions-of-two-linear-programming%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password