Expected value of the sample median from a folded normal distribution
Clash Royale CLAN TAG#URR8PPP
up vote
5
down vote
favorite
Suppose $X_1, ldots, X_n sim N(0,sigma^2)$ are iid. Find the expected value of $M$, the median of $vert X_1 vert, ldots vert X_n vert$
What I have so far:
The density of $vert X_i vert$ is given by:
$$f_vert X vert(x) = frac2sqrt2pi sigma^2expleft(-fracx^22sigma^2right)$$
If $n = 2m - 1$, the median $M$ is the $m^th$ order statistic of $vert X_1 vert, ldots, vert X_n vert$. This has density
$$f_vert X vert_(m) (x) = fracn!(m-1)!(n-m)! f_vert X vert(x) (F_vert X vert)^m-1(1 - F_vert X vert)^n-m$$
where $F_vert X vert(x) = F_X(x) - F_X(-x)$ is the cdf of $vert X vert$. So the expected value of the median is
$$mathbb E M = int_0^infty x f_vert X vert_(m) (x) dx$$
Is there a better way to approach this, rather than having to compute this integral?
probability-distributions normal-distribution median
add a comment |Â
up vote
5
down vote
favorite
Suppose $X_1, ldots, X_n sim N(0,sigma^2)$ are iid. Find the expected value of $M$, the median of $vert X_1 vert, ldots vert X_n vert$
What I have so far:
The density of $vert X_i vert$ is given by:
$$f_vert X vert(x) = frac2sqrt2pi sigma^2expleft(-fracx^22sigma^2right)$$
If $n = 2m - 1$, the median $M$ is the $m^th$ order statistic of $vert X_1 vert, ldots, vert X_n vert$. This has density
$$f_vert X vert_(m) (x) = fracn!(m-1)!(n-m)! f_vert X vert(x) (F_vert X vert)^m-1(1 - F_vert X vert)^n-m$$
where $F_vert X vert(x) = F_X(x) - F_X(-x)$ is the cdf of $vert X vert$. So the expected value of the median is
$$mathbb E M = int_0^infty x f_vert X vert_(m) (x) dx$$
Is there a better way to approach this, rather than having to compute this integral?
probability-distributions normal-distribution median
add a comment |Â
up vote
5
down vote
favorite
up vote
5
down vote
favorite
Suppose $X_1, ldots, X_n sim N(0,sigma^2)$ are iid. Find the expected value of $M$, the median of $vert X_1 vert, ldots vert X_n vert$
What I have so far:
The density of $vert X_i vert$ is given by:
$$f_vert X vert(x) = frac2sqrt2pi sigma^2expleft(-fracx^22sigma^2right)$$
If $n = 2m - 1$, the median $M$ is the $m^th$ order statistic of $vert X_1 vert, ldots, vert X_n vert$. This has density
$$f_vert X vert_(m) (x) = fracn!(m-1)!(n-m)! f_vert X vert(x) (F_vert X vert)^m-1(1 - F_vert X vert)^n-m$$
where $F_vert X vert(x) = F_X(x) - F_X(-x)$ is the cdf of $vert X vert$. So the expected value of the median is
$$mathbb E M = int_0^infty x f_vert X vert_(m) (x) dx$$
Is there a better way to approach this, rather than having to compute this integral?
probability-distributions normal-distribution median
Suppose $X_1, ldots, X_n sim N(0,sigma^2)$ are iid. Find the expected value of $M$, the median of $vert X_1 vert, ldots vert X_n vert$
What I have so far:
The density of $vert X_i vert$ is given by:
$$f_vert X vert(x) = frac2sqrt2pi sigma^2expleft(-fracx^22sigma^2right)$$
If $n = 2m - 1$, the median $M$ is the $m^th$ order statistic of $vert X_1 vert, ldots, vert X_n vert$. This has density
$$f_vert X vert_(m) (x) = fracn!(m-1)!(n-m)! f_vert X vert(x) (F_vert X vert)^m-1(1 - F_vert X vert)^n-m$$
where $F_vert X vert(x) = F_X(x) - F_X(-x)$ is the cdf of $vert X vert$. So the expected value of the median is
$$mathbb E M = int_0^infty x f_vert X vert_(m) (x) dx$$
Is there a better way to approach this, rather than having to compute this integral?
probability-distributions normal-distribution median
asked Jul 24 at 1:48
user3294195
20618
20618
add a comment |Â
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2860927%2fexpected-value-of-the-sample-median-from-a-folded-normal-distribution%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password