Fitch Logic Proof

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite












I am stumped on this proof. I have attached a link with my proof so far.



I'm not sure how to derive a contradiction from WeakPref(a,b) on line 12.



My proof so far







share|cite|improve this question





















  • Use negation introduction there.
    – Graham Kemp
    Jul 24 at 5:31










  • Did the advice help?
    – Graham Kemp
    Jul 24 at 13:41











  • @GrahamKemp Thank you for your help! However, I'm still stuck deriving a contradiction. I'm thinking of obtaining ~StrongPref(b,a) from StrongPref(a,b) ⟷ ~WeakPref(b,a) and WeakPref(a,b), but I'm not sure how to start.
    – Laur
    Jul 24 at 15:55










  • @GrahamKemp Is StrongPref(a,b) ↔ StrongPref(b,a) an assumption?
    – Laur
    Jul 24 at 22:42










  • Use Universal Elimination on premise 3: $forall x~forall y~(textsfStrongPref(x,y)leftrightarrowlnottextsfWeakPref(y,x))$ to obtain a useful biconditional to use with the assumptions of $textsfStrongPref(b,a)$ and $textsfWeakPref(a,b)$ .
    – Graham Kemp
    Jul 24 at 23:18















up vote
2
down vote

favorite












I am stumped on this proof. I have attached a link with my proof so far.



I'm not sure how to derive a contradiction from WeakPref(a,b) on line 12.



My proof so far







share|cite|improve this question





















  • Use negation introduction there.
    – Graham Kemp
    Jul 24 at 5:31










  • Did the advice help?
    – Graham Kemp
    Jul 24 at 13:41











  • @GrahamKemp Thank you for your help! However, I'm still stuck deriving a contradiction. I'm thinking of obtaining ~StrongPref(b,a) from StrongPref(a,b) ⟷ ~WeakPref(b,a) and WeakPref(a,b), but I'm not sure how to start.
    – Laur
    Jul 24 at 15:55










  • @GrahamKemp Is StrongPref(a,b) ↔ StrongPref(b,a) an assumption?
    – Laur
    Jul 24 at 22:42










  • Use Universal Elimination on premise 3: $forall x~forall y~(textsfStrongPref(x,y)leftrightarrowlnottextsfWeakPref(y,x))$ to obtain a useful biconditional to use with the assumptions of $textsfStrongPref(b,a)$ and $textsfWeakPref(a,b)$ .
    – Graham Kemp
    Jul 24 at 23:18













up vote
2
down vote

favorite









up vote
2
down vote

favorite











I am stumped on this proof. I have attached a link with my proof so far.



I'm not sure how to derive a contradiction from WeakPref(a,b) on line 12.



My proof so far







share|cite|improve this question













I am stumped on this proof. I have attached a link with my proof so far.



I'm not sure how to derive a contradiction from WeakPref(a,b) on line 12.



My proof so far









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 24 at 4:54









Graham Kemp

80.1k43275




80.1k43275









asked Jul 24 at 4:28









Laur

162




162











  • Use negation introduction there.
    – Graham Kemp
    Jul 24 at 5:31










  • Did the advice help?
    – Graham Kemp
    Jul 24 at 13:41











  • @GrahamKemp Thank you for your help! However, I'm still stuck deriving a contradiction. I'm thinking of obtaining ~StrongPref(b,a) from StrongPref(a,b) ⟷ ~WeakPref(b,a) and WeakPref(a,b), but I'm not sure how to start.
    – Laur
    Jul 24 at 15:55










  • @GrahamKemp Is StrongPref(a,b) ↔ StrongPref(b,a) an assumption?
    – Laur
    Jul 24 at 22:42










  • Use Universal Elimination on premise 3: $forall x~forall y~(textsfStrongPref(x,y)leftrightarrowlnottextsfWeakPref(y,x))$ to obtain a useful biconditional to use with the assumptions of $textsfStrongPref(b,a)$ and $textsfWeakPref(a,b)$ .
    – Graham Kemp
    Jul 24 at 23:18

















  • Use negation introduction there.
    – Graham Kemp
    Jul 24 at 5:31










  • Did the advice help?
    – Graham Kemp
    Jul 24 at 13:41











  • @GrahamKemp Thank you for your help! However, I'm still stuck deriving a contradiction. I'm thinking of obtaining ~StrongPref(b,a) from StrongPref(a,b) ⟷ ~WeakPref(b,a) and WeakPref(a,b), but I'm not sure how to start.
    – Laur
    Jul 24 at 15:55










  • @GrahamKemp Is StrongPref(a,b) ↔ StrongPref(b,a) an assumption?
    – Laur
    Jul 24 at 22:42










  • Use Universal Elimination on premise 3: $forall x~forall y~(textsfStrongPref(x,y)leftrightarrowlnottextsfWeakPref(y,x))$ to obtain a useful biconditional to use with the assumptions of $textsfStrongPref(b,a)$ and $textsfWeakPref(a,b)$ .
    – Graham Kemp
    Jul 24 at 23:18
















Use negation introduction there.
– Graham Kemp
Jul 24 at 5:31




Use negation introduction there.
– Graham Kemp
Jul 24 at 5:31












Did the advice help?
– Graham Kemp
Jul 24 at 13:41





Did the advice help?
– Graham Kemp
Jul 24 at 13:41













@GrahamKemp Thank you for your help! However, I'm still stuck deriving a contradiction. I'm thinking of obtaining ~StrongPref(b,a) from StrongPref(a,b) ⟷ ~WeakPref(b,a) and WeakPref(a,b), but I'm not sure how to start.
– Laur
Jul 24 at 15:55




@GrahamKemp Thank you for your help! However, I'm still stuck deriving a contradiction. I'm thinking of obtaining ~StrongPref(b,a) from StrongPref(a,b) ⟷ ~WeakPref(b,a) and WeakPref(a,b), but I'm not sure how to start.
– Laur
Jul 24 at 15:55












@GrahamKemp Is StrongPref(a,b) ↔ StrongPref(b,a) an assumption?
– Laur
Jul 24 at 22:42




@GrahamKemp Is StrongPref(a,b) ↔ StrongPref(b,a) an assumption?
– Laur
Jul 24 at 22:42












Use Universal Elimination on premise 3: $forall x~forall y~(textsfStrongPref(x,y)leftrightarrowlnottextsfWeakPref(y,x))$ to obtain a useful biconditional to use with the assumptions of $textsfStrongPref(b,a)$ and $textsfWeakPref(a,b)$ .
– Graham Kemp
Jul 24 at 23:18





Use Universal Elimination on premise 3: $forall x~forall y~(textsfStrongPref(x,y)leftrightarrowlnottextsfWeakPref(y,x))$ to obtain a useful biconditional to use with the assumptions of $textsfStrongPref(b,a)$ and $textsfWeakPref(a,b)$ .
– Graham Kemp
Jul 24 at 23:18











1 Answer
1






active

oldest

votes

















up vote
2
down vote













Yes, that's the way to go!   You are almost spot on the ball.   What you need to do at line 12 is assume $defSmathsfStrongPrefdefWmathsfWeakPrefW(a,b)$, assume $S(b,a)$, derive a contradiction, therefore introducing a negation so you may thereby use it in the disjunction elimination.
$$deffitch#1#2~~beginarrayl #1\hline #2endarraydefSmathsfStrongPrefdefWmathsfWeakPrefdeftooleftrightarrow
fitch~5.~S(a,b)~6.~S (a,b)tooneg W(b,a)\~7.~negW(b,a)\~8.~W(a,b)vee W(b,a)\fitch~9.~W(b,a)10.~bot\11.~neg S(b,a)\colorredfitch12.~W(a,b)fitch13.~S(b,a)~~vdots\~~vdots\16.~bot\17.~lnotS(b,a)\18.~neg S(b,a)$$






share|cite|improve this answer























    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2861006%2ffitch-logic-proof%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    2
    down vote













    Yes, that's the way to go!   You are almost spot on the ball.   What you need to do at line 12 is assume $defSmathsfStrongPrefdefWmathsfWeakPrefW(a,b)$, assume $S(b,a)$, derive a contradiction, therefore introducing a negation so you may thereby use it in the disjunction elimination.
    $$deffitch#1#2~~beginarrayl #1\hline #2endarraydefSmathsfStrongPrefdefWmathsfWeakPrefdeftooleftrightarrow
    fitch~5.~S(a,b)~6.~S (a,b)tooneg W(b,a)\~7.~negW(b,a)\~8.~W(a,b)vee W(b,a)\fitch~9.~W(b,a)10.~bot\11.~neg S(b,a)\colorredfitch12.~W(a,b)fitch13.~S(b,a)~~vdots\~~vdots\16.~bot\17.~lnotS(b,a)\18.~neg S(b,a)$$






    share|cite|improve this answer



























      up vote
      2
      down vote













      Yes, that's the way to go!   You are almost spot on the ball.   What you need to do at line 12 is assume $defSmathsfStrongPrefdefWmathsfWeakPrefW(a,b)$, assume $S(b,a)$, derive a contradiction, therefore introducing a negation so you may thereby use it in the disjunction elimination.
      $$deffitch#1#2~~beginarrayl #1\hline #2endarraydefSmathsfStrongPrefdefWmathsfWeakPrefdeftooleftrightarrow
      fitch~5.~S(a,b)~6.~S (a,b)tooneg W(b,a)\~7.~negW(b,a)\~8.~W(a,b)vee W(b,a)\fitch~9.~W(b,a)10.~bot\11.~neg S(b,a)\colorredfitch12.~W(a,b)fitch13.~S(b,a)~~vdots\~~vdots\16.~bot\17.~lnotS(b,a)\18.~neg S(b,a)$$






      share|cite|improve this answer

























        up vote
        2
        down vote










        up vote
        2
        down vote









        Yes, that's the way to go!   You are almost spot on the ball.   What you need to do at line 12 is assume $defSmathsfStrongPrefdefWmathsfWeakPrefW(a,b)$, assume $S(b,a)$, derive a contradiction, therefore introducing a negation so you may thereby use it in the disjunction elimination.
        $$deffitch#1#2~~beginarrayl #1\hline #2endarraydefSmathsfStrongPrefdefWmathsfWeakPrefdeftooleftrightarrow
        fitch~5.~S(a,b)~6.~S (a,b)tooneg W(b,a)\~7.~negW(b,a)\~8.~W(a,b)vee W(b,a)\fitch~9.~W(b,a)10.~bot\11.~neg S(b,a)\colorredfitch12.~W(a,b)fitch13.~S(b,a)~~vdots\~~vdots\16.~bot\17.~lnotS(b,a)\18.~neg S(b,a)$$






        share|cite|improve this answer















        Yes, that's the way to go!   You are almost spot on the ball.   What you need to do at line 12 is assume $defSmathsfStrongPrefdefWmathsfWeakPrefW(a,b)$, assume $S(b,a)$, derive a contradiction, therefore introducing a negation so you may thereby use it in the disjunction elimination.
        $$deffitch#1#2~~beginarrayl #1\hline #2endarraydefSmathsfStrongPrefdefWmathsfWeakPrefdeftooleftrightarrow
        fitch~5.~S(a,b)~6.~S (a,b)tooneg W(b,a)\~7.~negW(b,a)\~8.~W(a,b)vee W(b,a)\fitch~9.~W(b,a)10.~bot\11.~neg S(b,a)\colorredfitch12.~W(a,b)fitch13.~S(b,a)~~vdots\~~vdots\16.~bot\17.~lnotS(b,a)\18.~neg S(b,a)$$







        share|cite|improve this answer















        share|cite|improve this answer



        share|cite|improve this answer








        edited Jul 24 at 5:29


























        answered Jul 24 at 5:19









        Graham Kemp

        80.1k43275




        80.1k43275






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2861006%2ffitch-logic-proof%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What is the equation of a 3D cone with generalised tilt?

            Color the edges and diagonals of a regular polygon

            Relationship between determinant of matrix and determinant of adjoint?