Fourier Transform of Manchester (twinned-binary) function

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Given the following function used in binary telecommunications:



enter image description here



I'd like to know how I would obtain $P(f)$ the Fourier transform of this function. The function can be written as:



$$
p(t) = left{
beginarrayll
+1 & quad 0 leq fracTb2 \
-1 & quad fracTb2 lt Tb
endarray
right.
$$



I thought of maybe expressing it as some sort of shifted and truncated $sgn(x)$ function but I'm looking for the easiest/simplest mathematical solution.







share|cite|improve this question



















  • The Fourier transform of the Heaviside step function is a bit troublesome; the direct approach yields $$ hat H(omega) = frac1sqrt2pi int_0^infty e^-iomega t mathsf dt = lim_xtoinfty frac1sqrt2picdot frac1-e^-iomega xiomega, $$ but this limit does not exist. Rather, the correct answer is $$ hat H(omega) = frac1sqrt2pifrac1iomega + sqrtfracpi 2delta(omega), $$ where $delta(cdot)$ is the Dirac delta function. See here: cs.uaf.edu/~bueler/M611heaviside.pdf
    – Math1000
    Jul 25 at 11:11







  • 1




    Applying this logic to $p(t) = H(t)-2H(t-T_b/2)+H(t-T_b)$ we have $$ hat p(omega) = frac1sqrt2pifrac1iomegaleft(-1+2 e^iT_bomega/2-e^iT_bomegaright). $$
    – Math1000
    Jul 25 at 11:16















up vote
0
down vote

favorite












Given the following function used in binary telecommunications:



enter image description here



I'd like to know how I would obtain $P(f)$ the Fourier transform of this function. The function can be written as:



$$
p(t) = left{
beginarrayll
+1 & quad 0 leq fracTb2 \
-1 & quad fracTb2 lt Tb
endarray
right.
$$



I thought of maybe expressing it as some sort of shifted and truncated $sgn(x)$ function but I'm looking for the easiest/simplest mathematical solution.







share|cite|improve this question



















  • The Fourier transform of the Heaviside step function is a bit troublesome; the direct approach yields $$ hat H(omega) = frac1sqrt2pi int_0^infty e^-iomega t mathsf dt = lim_xtoinfty frac1sqrt2picdot frac1-e^-iomega xiomega, $$ but this limit does not exist. Rather, the correct answer is $$ hat H(omega) = frac1sqrt2pifrac1iomega + sqrtfracpi 2delta(omega), $$ where $delta(cdot)$ is the Dirac delta function. See here: cs.uaf.edu/~bueler/M611heaviside.pdf
    – Math1000
    Jul 25 at 11:11







  • 1




    Applying this logic to $p(t) = H(t)-2H(t-T_b/2)+H(t-T_b)$ we have $$ hat p(omega) = frac1sqrt2pifrac1iomegaleft(-1+2 e^iT_bomega/2-e^iT_bomegaright). $$
    – Math1000
    Jul 25 at 11:16













up vote
0
down vote

favorite









up vote
0
down vote

favorite











Given the following function used in binary telecommunications:



enter image description here



I'd like to know how I would obtain $P(f)$ the Fourier transform of this function. The function can be written as:



$$
p(t) = left{
beginarrayll
+1 & quad 0 leq fracTb2 \
-1 & quad fracTb2 lt Tb
endarray
right.
$$



I thought of maybe expressing it as some sort of shifted and truncated $sgn(x)$ function but I'm looking for the easiest/simplest mathematical solution.







share|cite|improve this question











Given the following function used in binary telecommunications:



enter image description here



I'd like to know how I would obtain $P(f)$ the Fourier transform of this function. The function can be written as:



$$
p(t) = left{
beginarrayll
+1 & quad 0 leq fracTb2 \
-1 & quad fracTb2 lt Tb
endarray
right.
$$



I thought of maybe expressing it as some sort of shifted and truncated $sgn(x)$ function but I'm looking for the easiest/simplest mathematical solution.









share|cite|improve this question










share|cite|improve this question




share|cite|improve this question









asked Jul 25 at 9:37









Blargian

124213




124213











  • The Fourier transform of the Heaviside step function is a bit troublesome; the direct approach yields $$ hat H(omega) = frac1sqrt2pi int_0^infty e^-iomega t mathsf dt = lim_xtoinfty frac1sqrt2picdot frac1-e^-iomega xiomega, $$ but this limit does not exist. Rather, the correct answer is $$ hat H(omega) = frac1sqrt2pifrac1iomega + sqrtfracpi 2delta(omega), $$ where $delta(cdot)$ is the Dirac delta function. See here: cs.uaf.edu/~bueler/M611heaviside.pdf
    – Math1000
    Jul 25 at 11:11







  • 1




    Applying this logic to $p(t) = H(t)-2H(t-T_b/2)+H(t-T_b)$ we have $$ hat p(omega) = frac1sqrt2pifrac1iomegaleft(-1+2 e^iT_bomega/2-e^iT_bomegaright). $$
    – Math1000
    Jul 25 at 11:16

















  • The Fourier transform of the Heaviside step function is a bit troublesome; the direct approach yields $$ hat H(omega) = frac1sqrt2pi int_0^infty e^-iomega t mathsf dt = lim_xtoinfty frac1sqrt2picdot frac1-e^-iomega xiomega, $$ but this limit does not exist. Rather, the correct answer is $$ hat H(omega) = frac1sqrt2pifrac1iomega + sqrtfracpi 2delta(omega), $$ where $delta(cdot)$ is the Dirac delta function. See here: cs.uaf.edu/~bueler/M611heaviside.pdf
    – Math1000
    Jul 25 at 11:11







  • 1




    Applying this logic to $p(t) = H(t)-2H(t-T_b/2)+H(t-T_b)$ we have $$ hat p(omega) = frac1sqrt2pifrac1iomegaleft(-1+2 e^iT_bomega/2-e^iT_bomegaright). $$
    – Math1000
    Jul 25 at 11:16
















The Fourier transform of the Heaviside step function is a bit troublesome; the direct approach yields $$ hat H(omega) = frac1sqrt2pi int_0^infty e^-iomega t mathsf dt = lim_xtoinfty frac1sqrt2picdot frac1-e^-iomega xiomega, $$ but this limit does not exist. Rather, the correct answer is $$ hat H(omega) = frac1sqrt2pifrac1iomega + sqrtfracpi 2delta(omega), $$ where $delta(cdot)$ is the Dirac delta function. See here: cs.uaf.edu/~bueler/M611heaviside.pdf
– Math1000
Jul 25 at 11:11





The Fourier transform of the Heaviside step function is a bit troublesome; the direct approach yields $$ hat H(omega) = frac1sqrt2pi int_0^infty e^-iomega t mathsf dt = lim_xtoinfty frac1sqrt2picdot frac1-e^-iomega xiomega, $$ but this limit does not exist. Rather, the correct answer is $$ hat H(omega) = frac1sqrt2pifrac1iomega + sqrtfracpi 2delta(omega), $$ where $delta(cdot)$ is the Dirac delta function. See here: cs.uaf.edu/~bueler/M611heaviside.pdf
– Math1000
Jul 25 at 11:11





1




1




Applying this logic to $p(t) = H(t)-2H(t-T_b/2)+H(t-T_b)$ we have $$ hat p(omega) = frac1sqrt2pifrac1iomegaleft(-1+2 e^iT_bomega/2-e^iT_bomegaright). $$
– Math1000
Jul 25 at 11:16





Applying this logic to $p(t) = H(t)-2H(t-T_b/2)+H(t-T_b)$ we have $$ hat p(omega) = frac1sqrt2pifrac1iomegaleft(-1+2 e^iT_bomega/2-e^iT_bomegaright). $$
– Math1000
Jul 25 at 11:16
















active

oldest

votes











Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);








 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2862227%2ffourier-transform-of-manchester-twinned-binary-function%23new-answer', 'question_page');

);

Post as a guest



































active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes










 

draft saved


draft discarded


























 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2862227%2ffourier-transform-of-manchester-twinned-binary-function%23new-answer', 'question_page');

);

Post as a guest













































































Comments

Popular posts from this blog

What is the equation of a 3D cone with generalised tilt?

Color the edges and diagonals of a regular polygon

Relationship between determinant of matrix and determinant of adjoint?