Fourier Transform of Manchester (twinned-binary) function
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Given the following function used in binary telecommunications:
I'd like to know how I would obtain $P(f)$ the Fourier transform of this function. The function can be written as:
$$
p(t) = left{
beginarrayll
+1 & quad 0 leq fracTb2 \
-1 & quad fracTb2 lt Tb
endarray
right.
$$
I thought of maybe expressing it as some sort of shifted and truncated $sgn(x)$ function but I'm looking for the easiest/simplest mathematical solution.
fourier-transform
add a comment |Â
up vote
0
down vote
favorite
Given the following function used in binary telecommunications:
I'd like to know how I would obtain $P(f)$ the Fourier transform of this function. The function can be written as:
$$
p(t) = left{
beginarrayll
+1 & quad 0 leq fracTb2 \
-1 & quad fracTb2 lt Tb
endarray
right.
$$
I thought of maybe expressing it as some sort of shifted and truncated $sgn(x)$ function but I'm looking for the easiest/simplest mathematical solution.
fourier-transform
The Fourier transform of the Heaviside step function is a bit troublesome; the direct approach yields $$ hat H(omega) = frac1sqrt2pi int_0^infty e^-iomega t mathsf dt = lim_xtoinfty frac1sqrt2picdot frac1-e^-iomega xiomega, $$ but this limit does not exist. Rather, the correct answer is $$ hat H(omega) = frac1sqrt2pifrac1iomega + sqrtfracpi 2delta(omega), $$ where $delta(cdot)$ is the Dirac delta function. See here: cs.uaf.edu/~bueler/M611heaviside.pdf
– Math1000
Jul 25 at 11:11
1
Applying this logic to $p(t) = H(t)-2H(t-T_b/2)+H(t-T_b)$ we have $$ hat p(omega) = frac1sqrt2pifrac1iomegaleft(-1+2 e^iT_bomega/2-e^iT_bomegaright). $$
– Math1000
Jul 25 at 11:16
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Given the following function used in binary telecommunications:
I'd like to know how I would obtain $P(f)$ the Fourier transform of this function. The function can be written as:
$$
p(t) = left{
beginarrayll
+1 & quad 0 leq fracTb2 \
-1 & quad fracTb2 lt Tb
endarray
right.
$$
I thought of maybe expressing it as some sort of shifted and truncated $sgn(x)$ function but I'm looking for the easiest/simplest mathematical solution.
fourier-transform
Given the following function used in binary telecommunications:
I'd like to know how I would obtain $P(f)$ the Fourier transform of this function. The function can be written as:
$$
p(t) = left{
beginarrayll
+1 & quad 0 leq fracTb2 \
-1 & quad fracTb2 lt Tb
endarray
right.
$$
I thought of maybe expressing it as some sort of shifted and truncated $sgn(x)$ function but I'm looking for the easiest/simplest mathematical solution.
fourier-transform
asked Jul 25 at 9:37


Blargian
124213
124213
The Fourier transform of the Heaviside step function is a bit troublesome; the direct approach yields $$ hat H(omega) = frac1sqrt2pi int_0^infty e^-iomega t mathsf dt = lim_xtoinfty frac1sqrt2picdot frac1-e^-iomega xiomega, $$ but this limit does not exist. Rather, the correct answer is $$ hat H(omega) = frac1sqrt2pifrac1iomega + sqrtfracpi 2delta(omega), $$ where $delta(cdot)$ is the Dirac delta function. See here: cs.uaf.edu/~bueler/M611heaviside.pdf
– Math1000
Jul 25 at 11:11
1
Applying this logic to $p(t) = H(t)-2H(t-T_b/2)+H(t-T_b)$ we have $$ hat p(omega) = frac1sqrt2pifrac1iomegaleft(-1+2 e^iT_bomega/2-e^iT_bomegaright). $$
– Math1000
Jul 25 at 11:16
add a comment |Â
The Fourier transform of the Heaviside step function is a bit troublesome; the direct approach yields $$ hat H(omega) = frac1sqrt2pi int_0^infty e^-iomega t mathsf dt = lim_xtoinfty frac1sqrt2picdot frac1-e^-iomega xiomega, $$ but this limit does not exist. Rather, the correct answer is $$ hat H(omega) = frac1sqrt2pifrac1iomega + sqrtfracpi 2delta(omega), $$ where $delta(cdot)$ is the Dirac delta function. See here: cs.uaf.edu/~bueler/M611heaviside.pdf
– Math1000
Jul 25 at 11:11
1
Applying this logic to $p(t) = H(t)-2H(t-T_b/2)+H(t-T_b)$ we have $$ hat p(omega) = frac1sqrt2pifrac1iomegaleft(-1+2 e^iT_bomega/2-e^iT_bomegaright). $$
– Math1000
Jul 25 at 11:16
The Fourier transform of the Heaviside step function is a bit troublesome; the direct approach yields $$ hat H(omega) = frac1sqrt2pi int_0^infty e^-iomega t mathsf dt = lim_xtoinfty frac1sqrt2picdot frac1-e^-iomega xiomega, $$ but this limit does not exist. Rather, the correct answer is $$ hat H(omega) = frac1sqrt2pifrac1iomega + sqrtfracpi 2delta(omega), $$ where $delta(cdot)$ is the Dirac delta function. See here: cs.uaf.edu/~bueler/M611heaviside.pdf
– Math1000
Jul 25 at 11:11
The Fourier transform of the Heaviside step function is a bit troublesome; the direct approach yields $$ hat H(omega) = frac1sqrt2pi int_0^infty e^-iomega t mathsf dt = lim_xtoinfty frac1sqrt2picdot frac1-e^-iomega xiomega, $$ but this limit does not exist. Rather, the correct answer is $$ hat H(omega) = frac1sqrt2pifrac1iomega + sqrtfracpi 2delta(omega), $$ where $delta(cdot)$ is the Dirac delta function. See here: cs.uaf.edu/~bueler/M611heaviside.pdf
– Math1000
Jul 25 at 11:11
1
1
Applying this logic to $p(t) = H(t)-2H(t-T_b/2)+H(t-T_b)$ we have $$ hat p(omega) = frac1sqrt2pifrac1iomegaleft(-1+2 e^iT_bomega/2-e^iT_bomegaright). $$
– Math1000
Jul 25 at 11:16
Applying this logic to $p(t) = H(t)-2H(t-T_b/2)+H(t-T_b)$ we have $$ hat p(omega) = frac1sqrt2pifrac1iomegaleft(-1+2 e^iT_bomega/2-e^iT_bomegaright). $$
– Math1000
Jul 25 at 11:16
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2862227%2ffourier-transform-of-manchester-twinned-binary-function%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
The Fourier transform of the Heaviside step function is a bit troublesome; the direct approach yields $$ hat H(omega) = frac1sqrt2pi int_0^infty e^-iomega t mathsf dt = lim_xtoinfty frac1sqrt2picdot frac1-e^-iomega xiomega, $$ but this limit does not exist. Rather, the correct answer is $$ hat H(omega) = frac1sqrt2pifrac1iomega + sqrtfracpi 2delta(omega), $$ where $delta(cdot)$ is the Dirac delta function. See here: cs.uaf.edu/~bueler/M611heaviside.pdf
– Math1000
Jul 25 at 11:11
1
Applying this logic to $p(t) = H(t)-2H(t-T_b/2)+H(t-T_b)$ we have $$ hat p(omega) = frac1sqrt2pifrac1iomegaleft(-1+2 e^iT_bomega/2-e^iT_bomegaright). $$
– Math1000
Jul 25 at 11:16