How do you evaluate limit of $fracsqrt1+x^2 - sqrt 1+xsqrt 1+x^3 - sqrt 1+x$ when $x$ tends to $0$?
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
I tried rationalization method and got as $fracx^2-xsqrt 1+x^3 - sqrt 1+x (sqrt1+x^2 + sqrt 1+x)$. But i feel the denominator having power of 3 I may be doing it wrong.The answer should be 1. Please help.
calculus limits
add a comment |Â
up vote
3
down vote
favorite
I tried rationalization method and got as $fracx^2-xsqrt 1+x^3 - sqrt 1+x (sqrt1+x^2 + sqrt 1+x)$. But i feel the denominator having power of 3 I may be doing it wrong.The answer should be 1. Please help.
calculus limits
Use Binomial expansion for each term
– markovchain
Jul 15 at 8:31
I split the denominator's 1+x^3 into (1+x)(x^2-x+1) but how should i multiply it with root of (1+x^2) + root of (1+x). Getting confused there.
– Shaikh Sakib
Jul 15 at 8:48
$(1+x)^1/2 =1+x/2+(1/2)(1-1/2)x^2+...$ use this expression for all terms and then take limit to zero, that will be very easy.
– markovchain
Jul 15 at 8:53
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
I tried rationalization method and got as $fracx^2-xsqrt 1+x^3 - sqrt 1+x (sqrt1+x^2 + sqrt 1+x)$. But i feel the denominator having power of 3 I may be doing it wrong.The answer should be 1. Please help.
calculus limits
I tried rationalization method and got as $fracx^2-xsqrt 1+x^3 - sqrt 1+x (sqrt1+x^2 + sqrt 1+x)$. But i feel the denominator having power of 3 I may be doing it wrong.The answer should be 1. Please help.
calculus limits
edited Jul 15 at 9:57
asked Jul 15 at 8:25
Shaikh Sakib
184
184
Use Binomial expansion for each term
– markovchain
Jul 15 at 8:31
I split the denominator's 1+x^3 into (1+x)(x^2-x+1) but how should i multiply it with root of (1+x^2) + root of (1+x). Getting confused there.
– Shaikh Sakib
Jul 15 at 8:48
$(1+x)^1/2 =1+x/2+(1/2)(1-1/2)x^2+...$ use this expression for all terms and then take limit to zero, that will be very easy.
– markovchain
Jul 15 at 8:53
add a comment |Â
Use Binomial expansion for each term
– markovchain
Jul 15 at 8:31
I split the denominator's 1+x^3 into (1+x)(x^2-x+1) but how should i multiply it with root of (1+x^2) + root of (1+x). Getting confused there.
– Shaikh Sakib
Jul 15 at 8:48
$(1+x)^1/2 =1+x/2+(1/2)(1-1/2)x^2+...$ use this expression for all terms and then take limit to zero, that will be very easy.
– markovchain
Jul 15 at 8:53
Use Binomial expansion for each term
– markovchain
Jul 15 at 8:31
Use Binomial expansion for each term
– markovchain
Jul 15 at 8:31
I split the denominator's 1+x^3 into (1+x)(x^2-x+1) but how should i multiply it with root of (1+x^2) + root of (1+x). Getting confused there.
– Shaikh Sakib
Jul 15 at 8:48
I split the denominator's 1+x^3 into (1+x)(x^2-x+1) but how should i multiply it with root of (1+x^2) + root of (1+x). Getting confused there.
– Shaikh Sakib
Jul 15 at 8:48
$(1+x)^1/2 =1+x/2+(1/2)(1-1/2)x^2+...$ use this expression for all terms and then take limit to zero, that will be very easy.
– markovchain
Jul 15 at 8:53
$(1+x)^1/2 =1+x/2+(1/2)(1-1/2)x^2+...$ use this expression for all terms and then take limit to zero, that will be very easy.
– markovchain
Jul 15 at 8:53
add a comment |Â
5 Answers
5
active
oldest
votes
up vote
2
down vote
accepted
Use the fact that when $uto 0$, $(1+u)^n approx 1+nu$.
Using that fact,
$$beginalign L &= lim_xto 0 fracsqrt1+x^2 - sqrt 1+xsqrt 1+x^3 - sqrt 1+x \ &= lim_xto 0 dfrac1+dfrac 12 x^2 - (1+dfrac 12 x)1+dfrac 12 x^3 - (1+dfrac 12 x)\ &= lim_xto 0 dfracx^2-xx^3-x \ &= lim_xto 0dfrac11+x \ &= colorred1endalign$$
1
the most hassle free and straight forward answer. Thank you.
– Shaikh Sakib
Jul 15 at 11:03
1
If you like the answer, you can accept it by clicking on the tick below the upvote button.
– DarkKnight
Jul 15 at 14:00
1
upvoted already!
– Shaikh Sakib
Jul 15 at 15:30
@Shaikh Sakib math.meta.stackexchange.com/a/3287/537100
– DarkKnight
Jul 15 at 16:17
add a comment |Â
up vote
3
down vote
Using the same rationalization method, when $xnotin0,1$,
$$
fracsqrt1+x^2-sqrt1+xsqrt1+x^3-sqrt1+x
=frac1x+1fracsqrt1+x^3+sqrt1+xsqrt1+x^2+sqrt1+x
$$
add a comment |Â
up vote
2
down vote
Use definition of derivation:
beginalign
fracsqrt1+x^2 - sqrt 1+xsqrt 1+x^3 - sqrt 1+x
&=
fracfracsqrt1+x^2-1x - fracsqrt 1+x-1xfracsqrt 1+x^3-1x - fracsqrt 1+x-1x\
&=
frac(sqrt1+x^2)'(sqrt 1+x^3)'\
&=
dfrac0-frac120-frac12\
&=1
endalign
You have miscomputed the derivatives of a couple of the terms.
– robjohn♦
Jul 15 at 8:50
@robjohn fixed. thanks!
– Nosrati
Jul 15 at 8:52
add a comment |Â
up vote
1
down vote
$sqrt1+x^n=1+x^n/2+O(x^2n)$ as $xto0$.
In particular $sqrt1+x=1+x/2+O(x^2)$, $sqrt1+x^2=1+O(x^2)$
and $sqrt1+x^3=1+O(x^2)$. Then your fraction is
$$frac1+O(x^2)-(1+x/2+O(x^2))1+O(x^2)-(1+x/2+O(x^2))
=frac-x/2+O(x^2)-x/2+O(x^2)$$
etc.
add a comment |Â
up vote
0
down vote
You should rationalize both numerator and denominator.
Terms will get cancelled and you will get the final answer
add a comment |Â
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
Use the fact that when $uto 0$, $(1+u)^n approx 1+nu$.
Using that fact,
$$beginalign L &= lim_xto 0 fracsqrt1+x^2 - sqrt 1+xsqrt 1+x^3 - sqrt 1+x \ &= lim_xto 0 dfrac1+dfrac 12 x^2 - (1+dfrac 12 x)1+dfrac 12 x^3 - (1+dfrac 12 x)\ &= lim_xto 0 dfracx^2-xx^3-x \ &= lim_xto 0dfrac11+x \ &= colorred1endalign$$
1
the most hassle free and straight forward answer. Thank you.
– Shaikh Sakib
Jul 15 at 11:03
1
If you like the answer, you can accept it by clicking on the tick below the upvote button.
– DarkKnight
Jul 15 at 14:00
1
upvoted already!
– Shaikh Sakib
Jul 15 at 15:30
@Shaikh Sakib math.meta.stackexchange.com/a/3287/537100
– DarkKnight
Jul 15 at 16:17
add a comment |Â
up vote
2
down vote
accepted
Use the fact that when $uto 0$, $(1+u)^n approx 1+nu$.
Using that fact,
$$beginalign L &= lim_xto 0 fracsqrt1+x^2 - sqrt 1+xsqrt 1+x^3 - sqrt 1+x \ &= lim_xto 0 dfrac1+dfrac 12 x^2 - (1+dfrac 12 x)1+dfrac 12 x^3 - (1+dfrac 12 x)\ &= lim_xto 0 dfracx^2-xx^3-x \ &= lim_xto 0dfrac11+x \ &= colorred1endalign$$
1
the most hassle free and straight forward answer. Thank you.
– Shaikh Sakib
Jul 15 at 11:03
1
If you like the answer, you can accept it by clicking on the tick below the upvote button.
– DarkKnight
Jul 15 at 14:00
1
upvoted already!
– Shaikh Sakib
Jul 15 at 15:30
@Shaikh Sakib math.meta.stackexchange.com/a/3287/537100
– DarkKnight
Jul 15 at 16:17
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
Use the fact that when $uto 0$, $(1+u)^n approx 1+nu$.
Using that fact,
$$beginalign L &= lim_xto 0 fracsqrt1+x^2 - sqrt 1+xsqrt 1+x^3 - sqrt 1+x \ &= lim_xto 0 dfrac1+dfrac 12 x^2 - (1+dfrac 12 x)1+dfrac 12 x^3 - (1+dfrac 12 x)\ &= lim_xto 0 dfracx^2-xx^3-x \ &= lim_xto 0dfrac11+x \ &= colorred1endalign$$
Use the fact that when $uto 0$, $(1+u)^n approx 1+nu$.
Using that fact,
$$beginalign L &= lim_xto 0 fracsqrt1+x^2 - sqrt 1+xsqrt 1+x^3 - sqrt 1+x \ &= lim_xto 0 dfrac1+dfrac 12 x^2 - (1+dfrac 12 x)1+dfrac 12 x^3 - (1+dfrac 12 x)\ &= lim_xto 0 dfracx^2-xx^3-x \ &= lim_xto 0dfrac11+x \ &= colorred1endalign$$
answered Jul 15 at 10:07


DarkKnight
403210
403210
1
the most hassle free and straight forward answer. Thank you.
– Shaikh Sakib
Jul 15 at 11:03
1
If you like the answer, you can accept it by clicking on the tick below the upvote button.
– DarkKnight
Jul 15 at 14:00
1
upvoted already!
– Shaikh Sakib
Jul 15 at 15:30
@Shaikh Sakib math.meta.stackexchange.com/a/3287/537100
– DarkKnight
Jul 15 at 16:17
add a comment |Â
1
the most hassle free and straight forward answer. Thank you.
– Shaikh Sakib
Jul 15 at 11:03
1
If you like the answer, you can accept it by clicking on the tick below the upvote button.
– DarkKnight
Jul 15 at 14:00
1
upvoted already!
– Shaikh Sakib
Jul 15 at 15:30
@Shaikh Sakib math.meta.stackexchange.com/a/3287/537100
– DarkKnight
Jul 15 at 16:17
1
1
the most hassle free and straight forward answer. Thank you.
– Shaikh Sakib
Jul 15 at 11:03
the most hassle free and straight forward answer. Thank you.
– Shaikh Sakib
Jul 15 at 11:03
1
1
If you like the answer, you can accept it by clicking on the tick below the upvote button.
– DarkKnight
Jul 15 at 14:00
If you like the answer, you can accept it by clicking on the tick below the upvote button.
– DarkKnight
Jul 15 at 14:00
1
1
upvoted already!
– Shaikh Sakib
Jul 15 at 15:30
upvoted already!
– Shaikh Sakib
Jul 15 at 15:30
@Shaikh Sakib math.meta.stackexchange.com/a/3287/537100
– DarkKnight
Jul 15 at 16:17
@Shaikh Sakib math.meta.stackexchange.com/a/3287/537100
– DarkKnight
Jul 15 at 16:17
add a comment |Â
up vote
3
down vote
Using the same rationalization method, when $xnotin0,1$,
$$
fracsqrt1+x^2-sqrt1+xsqrt1+x^3-sqrt1+x
=frac1x+1fracsqrt1+x^3+sqrt1+xsqrt1+x^2+sqrt1+x
$$
add a comment |Â
up vote
3
down vote
Using the same rationalization method, when $xnotin0,1$,
$$
fracsqrt1+x^2-sqrt1+xsqrt1+x^3-sqrt1+x
=frac1x+1fracsqrt1+x^3+sqrt1+xsqrt1+x^2+sqrt1+x
$$
add a comment |Â
up vote
3
down vote
up vote
3
down vote
Using the same rationalization method, when $xnotin0,1$,
$$
fracsqrt1+x^2-sqrt1+xsqrt1+x^3-sqrt1+x
=frac1x+1fracsqrt1+x^3+sqrt1+xsqrt1+x^2+sqrt1+x
$$
Using the same rationalization method, when $xnotin0,1$,
$$
fracsqrt1+x^2-sqrt1+xsqrt1+x^3-sqrt1+x
=frac1x+1fracsqrt1+x^3+sqrt1+xsqrt1+x^2+sqrt1+x
$$
edited Jul 15 at 8:46
answered Jul 15 at 8:32
robjohn♦
258k26297612
258k26297612
add a comment |Â
add a comment |Â
up vote
2
down vote
Use definition of derivation:
beginalign
fracsqrt1+x^2 - sqrt 1+xsqrt 1+x^3 - sqrt 1+x
&=
fracfracsqrt1+x^2-1x - fracsqrt 1+x-1xfracsqrt 1+x^3-1x - fracsqrt 1+x-1x\
&=
frac(sqrt1+x^2)'(sqrt 1+x^3)'\
&=
dfrac0-frac120-frac12\
&=1
endalign
You have miscomputed the derivatives of a couple of the terms.
– robjohn♦
Jul 15 at 8:50
@robjohn fixed. thanks!
– Nosrati
Jul 15 at 8:52
add a comment |Â
up vote
2
down vote
Use definition of derivation:
beginalign
fracsqrt1+x^2 - sqrt 1+xsqrt 1+x^3 - sqrt 1+x
&=
fracfracsqrt1+x^2-1x - fracsqrt 1+x-1xfracsqrt 1+x^3-1x - fracsqrt 1+x-1x\
&=
frac(sqrt1+x^2)'(sqrt 1+x^3)'\
&=
dfrac0-frac120-frac12\
&=1
endalign
You have miscomputed the derivatives of a couple of the terms.
– robjohn♦
Jul 15 at 8:50
@robjohn fixed. thanks!
– Nosrati
Jul 15 at 8:52
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Use definition of derivation:
beginalign
fracsqrt1+x^2 - sqrt 1+xsqrt 1+x^3 - sqrt 1+x
&=
fracfracsqrt1+x^2-1x - fracsqrt 1+x-1xfracsqrt 1+x^3-1x - fracsqrt 1+x-1x\
&=
frac(sqrt1+x^2)'(sqrt 1+x^3)'\
&=
dfrac0-frac120-frac12\
&=1
endalign
Use definition of derivation:
beginalign
fracsqrt1+x^2 - sqrt 1+xsqrt 1+x^3 - sqrt 1+x
&=
fracfracsqrt1+x^2-1x - fracsqrt 1+x-1xfracsqrt 1+x^3-1x - fracsqrt 1+x-1x\
&=
frac(sqrt1+x^2)'(sqrt 1+x^3)'\
&=
dfrac0-frac120-frac12\
&=1
endalign
edited Jul 15 at 8:50
answered Jul 15 at 8:48


Nosrati
19.9k41644
19.9k41644
You have miscomputed the derivatives of a couple of the terms.
– robjohn♦
Jul 15 at 8:50
@robjohn fixed. thanks!
– Nosrati
Jul 15 at 8:52
add a comment |Â
You have miscomputed the derivatives of a couple of the terms.
– robjohn♦
Jul 15 at 8:50
@robjohn fixed. thanks!
– Nosrati
Jul 15 at 8:52
You have miscomputed the derivatives of a couple of the terms.
– robjohn♦
Jul 15 at 8:50
You have miscomputed the derivatives of a couple of the terms.
– robjohn♦
Jul 15 at 8:50
@robjohn fixed. thanks!
– Nosrati
Jul 15 at 8:52
@robjohn fixed. thanks!
– Nosrati
Jul 15 at 8:52
add a comment |Â
up vote
1
down vote
$sqrt1+x^n=1+x^n/2+O(x^2n)$ as $xto0$.
In particular $sqrt1+x=1+x/2+O(x^2)$, $sqrt1+x^2=1+O(x^2)$
and $sqrt1+x^3=1+O(x^2)$. Then your fraction is
$$frac1+O(x^2)-(1+x/2+O(x^2))1+O(x^2)-(1+x/2+O(x^2))
=frac-x/2+O(x^2)-x/2+O(x^2)$$
etc.
add a comment |Â
up vote
1
down vote
$sqrt1+x^n=1+x^n/2+O(x^2n)$ as $xto0$.
In particular $sqrt1+x=1+x/2+O(x^2)$, $sqrt1+x^2=1+O(x^2)$
and $sqrt1+x^3=1+O(x^2)$. Then your fraction is
$$frac1+O(x^2)-(1+x/2+O(x^2))1+O(x^2)-(1+x/2+O(x^2))
=frac-x/2+O(x^2)-x/2+O(x^2)$$
etc.
add a comment |Â
up vote
1
down vote
up vote
1
down vote
$sqrt1+x^n=1+x^n/2+O(x^2n)$ as $xto0$.
In particular $sqrt1+x=1+x/2+O(x^2)$, $sqrt1+x^2=1+O(x^2)$
and $sqrt1+x^3=1+O(x^2)$. Then your fraction is
$$frac1+O(x^2)-(1+x/2+O(x^2))1+O(x^2)-(1+x/2+O(x^2))
=frac-x/2+O(x^2)-x/2+O(x^2)$$
etc.
$sqrt1+x^n=1+x^n/2+O(x^2n)$ as $xto0$.
In particular $sqrt1+x=1+x/2+O(x^2)$, $sqrt1+x^2=1+O(x^2)$
and $sqrt1+x^3=1+O(x^2)$. Then your fraction is
$$frac1+O(x^2)-(1+x/2+O(x^2))1+O(x^2)-(1+x/2+O(x^2))
=frac-x/2+O(x^2)-x/2+O(x^2)$$
etc.
answered Jul 15 at 8:32
Lord Shark the Unknown
85.8k951112
85.8k951112
add a comment |Â
add a comment |Â
up vote
0
down vote
You should rationalize both numerator and denominator.
Terms will get cancelled and you will get the final answer
add a comment |Â
up vote
0
down vote
You should rationalize both numerator and denominator.
Terms will get cancelled and you will get the final answer
add a comment |Â
up vote
0
down vote
up vote
0
down vote
You should rationalize both numerator and denominator.
Terms will get cancelled and you will get the final answer
You should rationalize both numerator and denominator.
Terms will get cancelled and you will get the final answer
answered Jul 15 at 17:16


Bhanupratapsingh Sengar
11
11
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2852294%2fhow-do-you-evaluate-limit-of-frac-sqrt1x2-sqrt-1x-sqrt-1x3%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Use Binomial expansion for each term
– markovchain
Jul 15 at 8:31
I split the denominator's 1+x^3 into (1+x)(x^2-x+1) but how should i multiply it with root of (1+x^2) + root of (1+x). Getting confused there.
– Shaikh Sakib
Jul 15 at 8:48
$(1+x)^1/2 =1+x/2+(1/2)(1-1/2)x^2+...$ use this expression for all terms and then take limit to zero, that will be very easy.
– markovchain
Jul 15 at 8:53