Identification of equivariant maps
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Let $C_n$ be a cyclic group of order $n$ and $X$ be a finite $C_n$-set such that the fixed point set $X^C_r = X$ for the subgroup $C_r$ of $C_n.$ With this setting in hand, I want to understand the mapping space $Map^C_n(mathbbZ[C_n/C_k], mathbbZ[X])$. Here $Map^C_n(S,T)$ stands for the set of all $C_n$-equivariant maps from $S$ to $T$ and $mathbbZ[X]$ means the Abelian group generated by the finite set $X.$
If $f : mathbbZ[C_n/C_k] to mathbbZ[X]$ be a $C_n$-equivariant map, then it should factor through the orbit space $mathbbZ[C_n/C_k]/C_r$ as $X^C_r = X.$ Therefore we get a $C_n/C_r$-equivariant map from $mathbbZ[C_n/C_k]/C_r$ to $mathbbZ[X].$
Can we identify the space $mathbbZ[C_n/C_k]/C_r$ with $mathbbZ[C_fracnr/ C_(fracnr,k)]?$
My guess is $Map^C_n(mathbbZ[C_n/C_k], mathbbZ[X]) cong Map^C_n/C_r(mathbbZ[C_fracnr/ C_(fracnr,k)], mathbbZ[X]).$ Where $(fracnr,k)$ stands for g.c.d.
Any help will be appreciated.
Thank you so much in advance.
group-actions equivariant-maps
add a comment |Â
up vote
0
down vote
favorite
Let $C_n$ be a cyclic group of order $n$ and $X$ be a finite $C_n$-set such that the fixed point set $X^C_r = X$ for the subgroup $C_r$ of $C_n.$ With this setting in hand, I want to understand the mapping space $Map^C_n(mathbbZ[C_n/C_k], mathbbZ[X])$. Here $Map^C_n(S,T)$ stands for the set of all $C_n$-equivariant maps from $S$ to $T$ and $mathbbZ[X]$ means the Abelian group generated by the finite set $X.$
If $f : mathbbZ[C_n/C_k] to mathbbZ[X]$ be a $C_n$-equivariant map, then it should factor through the orbit space $mathbbZ[C_n/C_k]/C_r$ as $X^C_r = X.$ Therefore we get a $C_n/C_r$-equivariant map from $mathbbZ[C_n/C_k]/C_r$ to $mathbbZ[X].$
Can we identify the space $mathbbZ[C_n/C_k]/C_r$ with $mathbbZ[C_fracnr/ C_(fracnr,k)]?$
My guess is $Map^C_n(mathbbZ[C_n/C_k], mathbbZ[X]) cong Map^C_n/C_r(mathbbZ[C_fracnr/ C_(fracnr,k)], mathbbZ[X]).$ Where $(fracnr,k)$ stands for g.c.d.
Any help will be appreciated.
Thank you so much in advance.
group-actions equivariant-maps
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $C_n$ be a cyclic group of order $n$ and $X$ be a finite $C_n$-set such that the fixed point set $X^C_r = X$ for the subgroup $C_r$ of $C_n.$ With this setting in hand, I want to understand the mapping space $Map^C_n(mathbbZ[C_n/C_k], mathbbZ[X])$. Here $Map^C_n(S,T)$ stands for the set of all $C_n$-equivariant maps from $S$ to $T$ and $mathbbZ[X]$ means the Abelian group generated by the finite set $X.$
If $f : mathbbZ[C_n/C_k] to mathbbZ[X]$ be a $C_n$-equivariant map, then it should factor through the orbit space $mathbbZ[C_n/C_k]/C_r$ as $X^C_r = X.$ Therefore we get a $C_n/C_r$-equivariant map from $mathbbZ[C_n/C_k]/C_r$ to $mathbbZ[X].$
Can we identify the space $mathbbZ[C_n/C_k]/C_r$ with $mathbbZ[C_fracnr/ C_(fracnr,k)]?$
My guess is $Map^C_n(mathbbZ[C_n/C_k], mathbbZ[X]) cong Map^C_n/C_r(mathbbZ[C_fracnr/ C_(fracnr,k)], mathbbZ[X]).$ Where $(fracnr,k)$ stands for g.c.d.
Any help will be appreciated.
Thank you so much in advance.
group-actions equivariant-maps
Let $C_n$ be a cyclic group of order $n$ and $X$ be a finite $C_n$-set such that the fixed point set $X^C_r = X$ for the subgroup $C_r$ of $C_n.$ With this setting in hand, I want to understand the mapping space $Map^C_n(mathbbZ[C_n/C_k], mathbbZ[X])$. Here $Map^C_n(S,T)$ stands for the set of all $C_n$-equivariant maps from $S$ to $T$ and $mathbbZ[X]$ means the Abelian group generated by the finite set $X.$
If $f : mathbbZ[C_n/C_k] to mathbbZ[X]$ be a $C_n$-equivariant map, then it should factor through the orbit space $mathbbZ[C_n/C_k]/C_r$ as $X^C_r = X.$ Therefore we get a $C_n/C_r$-equivariant map from $mathbbZ[C_n/C_k]/C_r$ to $mathbbZ[X].$
Can we identify the space $mathbbZ[C_n/C_k]/C_r$ with $mathbbZ[C_fracnr/ C_(fracnr,k)]?$
My guess is $Map^C_n(mathbbZ[C_n/C_k], mathbbZ[X]) cong Map^C_n/C_r(mathbbZ[C_fracnr/ C_(fracnr,k)], mathbbZ[X]).$ Where $(fracnr,k)$ stands for g.c.d.
Any help will be appreciated.
Thank you so much in advance.
group-actions equivariant-maps
edited Jul 29 at 12:20
asked Jul 29 at 12:13
Math
35819
35819
add a comment |Â
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2866024%2fidentification-of-equivariant-maps%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password