If $AB=BA$, prove that $ A=beginbmatrix a & 0 \ 0 & a endbmatrix $
Clash Royale CLAN TAG#URR8PPP
up vote
7
down vote
favorite
Let $A$ a $2x2$ matrix, if $AB=BA$ for every $B$ of the size $2x2$, Prove that:
$$
A=beginbmatrix a & 0 \ 0 & a endbmatrix
$$
$a in mathbbR$
My attempt:
Let $$
A=beginbmatrix a_1 & b_1 \ c_1 & d_1 endbmatrix
$$
$$B=beginbmatrix a_2 & b_2 \ c_2 & d_2 endbmatrix$$
And since $AB=BA$, then
$a_1 a_2 + b_1 c_2 = a_1a_2+b_2 c_1$
So $b_2 c_1=b_1 c_2$
And
$a_1 b_2+b_1 d_2=a_2 b_1+b_2 d_1$
$c_1 a_2+d_1 c_2=c_2 a_1+d_2 c_1$
But what can I do now ?
Thanks :)
linear-algebra
add a comment |Â
up vote
7
down vote
favorite
Let $A$ a $2x2$ matrix, if $AB=BA$ for every $B$ of the size $2x2$, Prove that:
$$
A=beginbmatrix a & 0 \ 0 & a endbmatrix
$$
$a in mathbbR$
My attempt:
Let $$
A=beginbmatrix a_1 & b_1 \ c_1 & d_1 endbmatrix
$$
$$B=beginbmatrix a_2 & b_2 \ c_2 & d_2 endbmatrix$$
And since $AB=BA$, then
$a_1 a_2 + b_1 c_2 = a_1a_2+b_2 c_1$
So $b_2 c_1=b_1 c_2$
And
$a_1 b_2+b_1 d_2=a_2 b_1+b_2 d_1$
$c_1 a_2+d_1 c_2=c_2 a_1+d_2 c_1$
But what can I do now ?
Thanks :)
linear-algebra
This works for $ntimes n$ matrices in general. In fact, if $D$ is a division ring, then the center of $M_n(D)$ consists of the scalar matrices $dcdot I_n$, where $I_n$ is the identity matrix and $d$ is an element of the center of $D$.
– A. Pongrácz
Jul 19 at 12:55
add a comment |Â
up vote
7
down vote
favorite
up vote
7
down vote
favorite
Let $A$ a $2x2$ matrix, if $AB=BA$ for every $B$ of the size $2x2$, Prove that:
$$
A=beginbmatrix a & 0 \ 0 & a endbmatrix
$$
$a in mathbbR$
My attempt:
Let $$
A=beginbmatrix a_1 & b_1 \ c_1 & d_1 endbmatrix
$$
$$B=beginbmatrix a_2 & b_2 \ c_2 & d_2 endbmatrix$$
And since $AB=BA$, then
$a_1 a_2 + b_1 c_2 = a_1a_2+b_2 c_1$
So $b_2 c_1=b_1 c_2$
And
$a_1 b_2+b_1 d_2=a_2 b_1+b_2 d_1$
$c_1 a_2+d_1 c_2=c_2 a_1+d_2 c_1$
But what can I do now ?
Thanks :)
linear-algebra
Let $A$ a $2x2$ matrix, if $AB=BA$ for every $B$ of the size $2x2$, Prove that:
$$
A=beginbmatrix a & 0 \ 0 & a endbmatrix
$$
$a in mathbbR$
My attempt:
Let $$
A=beginbmatrix a_1 & b_1 \ c_1 & d_1 endbmatrix
$$
$$B=beginbmatrix a_2 & b_2 \ c_2 & d_2 endbmatrix$$
And since $AB=BA$, then
$a_1 a_2 + b_1 c_2 = a_1a_2+b_2 c_1$
So $b_2 c_1=b_1 c_2$
And
$a_1 b_2+b_1 d_2=a_2 b_1+b_2 d_1$
$c_1 a_2+d_1 c_2=c_2 a_1+d_2 c_1$
But what can I do now ?
Thanks :)
linear-algebra
asked Jul 19 at 10:58
Dima
438214
438214
This works for $ntimes n$ matrices in general. In fact, if $D$ is a division ring, then the center of $M_n(D)$ consists of the scalar matrices $dcdot I_n$, where $I_n$ is the identity matrix and $d$ is an element of the center of $D$.
– A. Pongrácz
Jul 19 at 12:55
add a comment |Â
This works for $ntimes n$ matrices in general. In fact, if $D$ is a division ring, then the center of $M_n(D)$ consists of the scalar matrices $dcdot I_n$, where $I_n$ is the identity matrix and $d$ is an element of the center of $D$.
– A. Pongrácz
Jul 19 at 12:55
This works for $ntimes n$ matrices in general. In fact, if $D$ is a division ring, then the center of $M_n(D)$ consists of the scalar matrices $dcdot I_n$, where $I_n$ is the identity matrix and $d$ is an element of the center of $D$.
– A. Pongrácz
Jul 19 at 12:55
This works for $ntimes n$ matrices in general. In fact, if $D$ is a division ring, then the center of $M_n(D)$ consists of the scalar matrices $dcdot I_n$, where $I_n$ is the identity matrix and $d$ is an element of the center of $D$.
– A. Pongrácz
Jul 19 at 12:55
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
17
down vote
accepted
Let $A=pmatrixa&b\c&d$. For $B=pmatrix1&0\0&0$ we have
$AB=pmatrixa&0\c&0$ and $BA=pmatrixa&b\0&0$. So $AB=BA$
implies $b=c=0$, that is $A=pmatrixa&0\0&d$. Now try, say $B=pmatrix0&1\0&0$.
2
Thank you so much,when I take $B=pmatrix{0&1\0&0 I got $a=d$, then we proved it :)
– Dima
Jul 19 at 11:41
add a comment |Â
up vote
3
down vote
Note:
$$beginpmatrix a_11 & a_12 \ a_21 & a_22 endpmatrix
beginpmatrix b_11 & b_12 \ b_21 & b_22 endpmatrix=
beginpmatrix b_11 & b_12 \ b_21 & b_22 endpmatrix
beginpmatrix a_11 & a_12 \ a_21 & a_22 endpmatrix Rightarrow \
begincasesrequirecancelcancela_11b_11+a_12b_21=cancelb_11a_11+b_12a_21\
a_11b_12+a_12b_22=b_11a_12+b_12a_22\
a_21b_11+a_22b_21=b_21a_11+b_22a_21\
a_21b_12+cancela_22b_22=b_21a_12+cancelb_22a_22endcases$$
From $(1)$, since $b_12$ and $b_21$ can be any number, in particular, $b_12=0$ and $b_21ne 0$, we get: $a_12=0$.
Similarly, for $b_12ne 0$ and $b_21=0$, we get $a_21=0$.
From $(2)$, since $a_12=0$ and $b_12$ is an arbitrary number, we get $a_11b_12=b_12a_22 Rightarrow a_11=a_22$.
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
17
down vote
accepted
Let $A=pmatrixa&b\c&d$. For $B=pmatrix1&0\0&0$ we have
$AB=pmatrixa&0\c&0$ and $BA=pmatrixa&b\0&0$. So $AB=BA$
implies $b=c=0$, that is $A=pmatrixa&0\0&d$. Now try, say $B=pmatrix0&1\0&0$.
2
Thank you so much,when I take $B=pmatrix{0&1\0&0 I got $a=d$, then we proved it :)
– Dima
Jul 19 at 11:41
add a comment |Â
up vote
17
down vote
accepted
Let $A=pmatrixa&b\c&d$. For $B=pmatrix1&0\0&0$ we have
$AB=pmatrixa&0\c&0$ and $BA=pmatrixa&b\0&0$. So $AB=BA$
implies $b=c=0$, that is $A=pmatrixa&0\0&d$. Now try, say $B=pmatrix0&1\0&0$.
2
Thank you so much,when I take $B=pmatrix{0&1\0&0 I got $a=d$, then we proved it :)
– Dima
Jul 19 at 11:41
add a comment |Â
up vote
17
down vote
accepted
up vote
17
down vote
accepted
Let $A=pmatrixa&b\c&d$. For $B=pmatrix1&0\0&0$ we have
$AB=pmatrixa&0\c&0$ and $BA=pmatrixa&b\0&0$. So $AB=BA$
implies $b=c=0$, that is $A=pmatrixa&0\0&d$. Now try, say $B=pmatrix0&1\0&0$.
Let $A=pmatrixa&b\c&d$. For $B=pmatrix1&0\0&0$ we have
$AB=pmatrixa&0\c&0$ and $BA=pmatrixa&b\0&0$. So $AB=BA$
implies $b=c=0$, that is $A=pmatrixa&0\0&d$. Now try, say $B=pmatrix0&1\0&0$.
answered Jul 19 at 11:04
Lord Shark the Unknown
85.5k951112
85.5k951112
2
Thank you so much,when I take $B=pmatrix{0&1\0&0 I got $a=d$, then we proved it :)
– Dima
Jul 19 at 11:41
add a comment |Â
2
Thank you so much,when I take $B=pmatrix{0&1\0&0 I got $a=d$, then we proved it :)
– Dima
Jul 19 at 11:41
2
2
Thank you so much,when I take $B=pmatrix{0&1\0&0 I got $a=d$, then we proved it :)
– Dima
Jul 19 at 11:41
Thank you so much,when I take $B=pmatrix{0&1\0&0 I got $a=d$, then we proved it :)
– Dima
Jul 19 at 11:41
add a comment |Â
up vote
3
down vote
Note:
$$beginpmatrix a_11 & a_12 \ a_21 & a_22 endpmatrix
beginpmatrix b_11 & b_12 \ b_21 & b_22 endpmatrix=
beginpmatrix b_11 & b_12 \ b_21 & b_22 endpmatrix
beginpmatrix a_11 & a_12 \ a_21 & a_22 endpmatrix Rightarrow \
begincasesrequirecancelcancela_11b_11+a_12b_21=cancelb_11a_11+b_12a_21\
a_11b_12+a_12b_22=b_11a_12+b_12a_22\
a_21b_11+a_22b_21=b_21a_11+b_22a_21\
a_21b_12+cancela_22b_22=b_21a_12+cancelb_22a_22endcases$$
From $(1)$, since $b_12$ and $b_21$ can be any number, in particular, $b_12=0$ and $b_21ne 0$, we get: $a_12=0$.
Similarly, for $b_12ne 0$ and $b_21=0$, we get $a_21=0$.
From $(2)$, since $a_12=0$ and $b_12$ is an arbitrary number, we get $a_11b_12=b_12a_22 Rightarrow a_11=a_22$.
add a comment |Â
up vote
3
down vote
Note:
$$beginpmatrix a_11 & a_12 \ a_21 & a_22 endpmatrix
beginpmatrix b_11 & b_12 \ b_21 & b_22 endpmatrix=
beginpmatrix b_11 & b_12 \ b_21 & b_22 endpmatrix
beginpmatrix a_11 & a_12 \ a_21 & a_22 endpmatrix Rightarrow \
begincasesrequirecancelcancela_11b_11+a_12b_21=cancelb_11a_11+b_12a_21\
a_11b_12+a_12b_22=b_11a_12+b_12a_22\
a_21b_11+a_22b_21=b_21a_11+b_22a_21\
a_21b_12+cancela_22b_22=b_21a_12+cancelb_22a_22endcases$$
From $(1)$, since $b_12$ and $b_21$ can be any number, in particular, $b_12=0$ and $b_21ne 0$, we get: $a_12=0$.
Similarly, for $b_12ne 0$ and $b_21=0$, we get $a_21=0$.
From $(2)$, since $a_12=0$ and $b_12$ is an arbitrary number, we get $a_11b_12=b_12a_22 Rightarrow a_11=a_22$.
add a comment |Â
up vote
3
down vote
up vote
3
down vote
Note:
$$beginpmatrix a_11 & a_12 \ a_21 & a_22 endpmatrix
beginpmatrix b_11 & b_12 \ b_21 & b_22 endpmatrix=
beginpmatrix b_11 & b_12 \ b_21 & b_22 endpmatrix
beginpmatrix a_11 & a_12 \ a_21 & a_22 endpmatrix Rightarrow \
begincasesrequirecancelcancela_11b_11+a_12b_21=cancelb_11a_11+b_12a_21\
a_11b_12+a_12b_22=b_11a_12+b_12a_22\
a_21b_11+a_22b_21=b_21a_11+b_22a_21\
a_21b_12+cancela_22b_22=b_21a_12+cancelb_22a_22endcases$$
From $(1)$, since $b_12$ and $b_21$ can be any number, in particular, $b_12=0$ and $b_21ne 0$, we get: $a_12=0$.
Similarly, for $b_12ne 0$ and $b_21=0$, we get $a_21=0$.
From $(2)$, since $a_12=0$ and $b_12$ is an arbitrary number, we get $a_11b_12=b_12a_22 Rightarrow a_11=a_22$.
Note:
$$beginpmatrix a_11 & a_12 \ a_21 & a_22 endpmatrix
beginpmatrix b_11 & b_12 \ b_21 & b_22 endpmatrix=
beginpmatrix b_11 & b_12 \ b_21 & b_22 endpmatrix
beginpmatrix a_11 & a_12 \ a_21 & a_22 endpmatrix Rightarrow \
begincasesrequirecancelcancela_11b_11+a_12b_21=cancelb_11a_11+b_12a_21\
a_11b_12+a_12b_22=b_11a_12+b_12a_22\
a_21b_11+a_22b_21=b_21a_11+b_22a_21\
a_21b_12+cancela_22b_22=b_21a_12+cancelb_22a_22endcases$$
From $(1)$, since $b_12$ and $b_21$ can be any number, in particular, $b_12=0$ and $b_21ne 0$, we get: $a_12=0$.
Similarly, for $b_12ne 0$ and $b_21=0$, we get $a_21=0$.
From $(2)$, since $a_12=0$ and $b_12$ is an arbitrary number, we get $a_11b_12=b_12a_22 Rightarrow a_11=a_22$.
answered Jul 19 at 11:50


farruhota
13.7k2632
13.7k2632
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2856509%2fif-ab-ba-prove-that-a-beginbmatrix-a-0-0-a-endbmatrix%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
This works for $ntimes n$ matrices in general. In fact, if $D$ is a division ring, then the center of $M_n(D)$ consists of the scalar matrices $dcdot I_n$, where $I_n$ is the identity matrix and $d$ is an element of the center of $D$.
– A. Pongrácz
Jul 19 at 12:55