If $AB=BA$, prove that $ A=beginbmatrix a & 0 \ 0 & a endbmatrix $

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
7
down vote

favorite
1













Let $A$ a $2x2$ matrix, if $AB=BA$ for every $B$ of the size $2x2$, Prove that:



$$
A=beginbmatrix a & 0 \ 0 & a endbmatrix
$$



$a in mathbbR$




My attempt:



Let $$
A=beginbmatrix a_1 & b_1 \ c_1 & d_1 endbmatrix
$$



$$B=beginbmatrix a_2 & b_2 \ c_2 & d_2 endbmatrix$$



And since $AB=BA$, then



$a_1 a_2 + b_1 c_2 = a_1a_2+b_2 c_1$



So $b_2 c_1=b_1 c_2$



And



$a_1 b_2+b_1 d_2=a_2 b_1+b_2 d_1$



$c_1 a_2+d_1 c_2=c_2 a_1+d_2 c_1$



But what can I do now ?
Thanks :)







share|cite|improve this question



















  • This works for $ntimes n$ matrices in general. In fact, if $D$ is a division ring, then the center of $M_n(D)$ consists of the scalar matrices $dcdot I_n$, where $I_n$ is the identity matrix and $d$ is an element of the center of $D$.
    – A. Pongrácz
    Jul 19 at 12:55















up vote
7
down vote

favorite
1













Let $A$ a $2x2$ matrix, if $AB=BA$ for every $B$ of the size $2x2$, Prove that:



$$
A=beginbmatrix a & 0 \ 0 & a endbmatrix
$$



$a in mathbbR$




My attempt:



Let $$
A=beginbmatrix a_1 & b_1 \ c_1 & d_1 endbmatrix
$$



$$B=beginbmatrix a_2 & b_2 \ c_2 & d_2 endbmatrix$$



And since $AB=BA$, then



$a_1 a_2 + b_1 c_2 = a_1a_2+b_2 c_1$



So $b_2 c_1=b_1 c_2$



And



$a_1 b_2+b_1 d_2=a_2 b_1+b_2 d_1$



$c_1 a_2+d_1 c_2=c_2 a_1+d_2 c_1$



But what can I do now ?
Thanks :)







share|cite|improve this question



















  • This works for $ntimes n$ matrices in general. In fact, if $D$ is a division ring, then the center of $M_n(D)$ consists of the scalar matrices $dcdot I_n$, where $I_n$ is the identity matrix and $d$ is an element of the center of $D$.
    – A. Pongrácz
    Jul 19 at 12:55













up vote
7
down vote

favorite
1









up vote
7
down vote

favorite
1






1






Let $A$ a $2x2$ matrix, if $AB=BA$ for every $B$ of the size $2x2$, Prove that:



$$
A=beginbmatrix a & 0 \ 0 & a endbmatrix
$$



$a in mathbbR$




My attempt:



Let $$
A=beginbmatrix a_1 & b_1 \ c_1 & d_1 endbmatrix
$$



$$B=beginbmatrix a_2 & b_2 \ c_2 & d_2 endbmatrix$$



And since $AB=BA$, then



$a_1 a_2 + b_1 c_2 = a_1a_2+b_2 c_1$



So $b_2 c_1=b_1 c_2$



And



$a_1 b_2+b_1 d_2=a_2 b_1+b_2 d_1$



$c_1 a_2+d_1 c_2=c_2 a_1+d_2 c_1$



But what can I do now ?
Thanks :)







share|cite|improve this question












Let $A$ a $2x2$ matrix, if $AB=BA$ for every $B$ of the size $2x2$, Prove that:



$$
A=beginbmatrix a & 0 \ 0 & a endbmatrix
$$



$a in mathbbR$




My attempt:



Let $$
A=beginbmatrix a_1 & b_1 \ c_1 & d_1 endbmatrix
$$



$$B=beginbmatrix a_2 & b_2 \ c_2 & d_2 endbmatrix$$



And since $AB=BA$, then



$a_1 a_2 + b_1 c_2 = a_1a_2+b_2 c_1$



So $b_2 c_1=b_1 c_2$



And



$a_1 b_2+b_1 d_2=a_2 b_1+b_2 d_1$



$c_1 a_2+d_1 c_2=c_2 a_1+d_2 c_1$



But what can I do now ?
Thanks :)









share|cite|improve this question










share|cite|improve this question




share|cite|improve this question









asked Jul 19 at 10:58









Dima

438214




438214











  • This works for $ntimes n$ matrices in general. In fact, if $D$ is a division ring, then the center of $M_n(D)$ consists of the scalar matrices $dcdot I_n$, where $I_n$ is the identity matrix and $d$ is an element of the center of $D$.
    – A. Pongrácz
    Jul 19 at 12:55

















  • This works for $ntimes n$ matrices in general. In fact, if $D$ is a division ring, then the center of $M_n(D)$ consists of the scalar matrices $dcdot I_n$, where $I_n$ is the identity matrix and $d$ is an element of the center of $D$.
    – A. Pongrácz
    Jul 19 at 12:55
















This works for $ntimes n$ matrices in general. In fact, if $D$ is a division ring, then the center of $M_n(D)$ consists of the scalar matrices $dcdot I_n$, where $I_n$ is the identity matrix and $d$ is an element of the center of $D$.
– A. Pongrácz
Jul 19 at 12:55





This works for $ntimes n$ matrices in general. In fact, if $D$ is a division ring, then the center of $M_n(D)$ consists of the scalar matrices $dcdot I_n$, where $I_n$ is the identity matrix and $d$ is an element of the center of $D$.
– A. Pongrácz
Jul 19 at 12:55











2 Answers
2






active

oldest

votes

















up vote
17
down vote



accepted










Let $A=pmatrixa&b\c&d$. For $B=pmatrix1&0\0&0$ we have
$AB=pmatrixa&0\c&0$ and $BA=pmatrixa&b\0&0$. So $AB=BA$
implies $b=c=0$, that is $A=pmatrixa&0\0&d$. Now try, say $B=pmatrix0&1\0&0$.






share|cite|improve this answer

















  • 2




    Thank you so much,when I take $B=pmatrix{0&1\0&0 I got $a=d$, then we proved it :)
    – Dima
    Jul 19 at 11:41

















up vote
3
down vote













Note:
$$beginpmatrix a_11 & a_12 \ a_21 & a_22 endpmatrix
beginpmatrix b_11 & b_12 \ b_21 & b_22 endpmatrix=
beginpmatrix b_11 & b_12 \ b_21 & b_22 endpmatrix
beginpmatrix a_11 & a_12 \ a_21 & a_22 endpmatrix Rightarrow \
begincasesrequirecancelcancela_11b_11+a_12b_21=cancelb_11a_11+b_12a_21\
a_11b_12+a_12b_22=b_11a_12+b_12a_22\
a_21b_11+a_22b_21=b_21a_11+b_22a_21\
a_21b_12+cancela_22b_22=b_21a_12+cancelb_22a_22endcases$$
From $(1)$, since $b_12$ and $b_21$ can be any number, in particular, $b_12=0$ and $b_21ne 0$, we get: $a_12=0$.



Similarly, for $b_12ne 0$ and $b_21=0$, we get $a_21=0$.



From $(2)$, since $a_12=0$ and $b_12$ is an arbitrary number, we get $a_11b_12=b_12a_22 Rightarrow a_11=a_22$.






share|cite|improve this answer





















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2856509%2fif-ab-ba-prove-that-a-beginbmatrix-a-0-0-a-endbmatrix%23new-answer', 'question_page');

    );

    Post as a guest






























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    17
    down vote



    accepted










    Let $A=pmatrixa&b\c&d$. For $B=pmatrix1&0\0&0$ we have
    $AB=pmatrixa&0\c&0$ and $BA=pmatrixa&b\0&0$. So $AB=BA$
    implies $b=c=0$, that is $A=pmatrixa&0\0&d$. Now try, say $B=pmatrix0&1\0&0$.






    share|cite|improve this answer

















    • 2




      Thank you so much,when I take $B=pmatrix{0&1\0&0 I got $a=d$, then we proved it :)
      – Dima
      Jul 19 at 11:41














    up vote
    17
    down vote



    accepted










    Let $A=pmatrixa&b\c&d$. For $B=pmatrix1&0\0&0$ we have
    $AB=pmatrixa&0\c&0$ and $BA=pmatrixa&b\0&0$. So $AB=BA$
    implies $b=c=0$, that is $A=pmatrixa&0\0&d$. Now try, say $B=pmatrix0&1\0&0$.






    share|cite|improve this answer

















    • 2




      Thank you so much,when I take $B=pmatrix{0&1\0&0 I got $a=d$, then we proved it :)
      – Dima
      Jul 19 at 11:41












    up vote
    17
    down vote



    accepted







    up vote
    17
    down vote



    accepted






    Let $A=pmatrixa&b\c&d$. For $B=pmatrix1&0\0&0$ we have
    $AB=pmatrixa&0\c&0$ and $BA=pmatrixa&b\0&0$. So $AB=BA$
    implies $b=c=0$, that is $A=pmatrixa&0\0&d$. Now try, say $B=pmatrix0&1\0&0$.






    share|cite|improve this answer













    Let $A=pmatrixa&b\c&d$. For $B=pmatrix1&0\0&0$ we have
    $AB=pmatrixa&0\c&0$ and $BA=pmatrixa&b\0&0$. So $AB=BA$
    implies $b=c=0$, that is $A=pmatrixa&0\0&d$. Now try, say $B=pmatrix0&1\0&0$.







    share|cite|improve this answer













    share|cite|improve this answer



    share|cite|improve this answer











    answered Jul 19 at 11:04









    Lord Shark the Unknown

    85.5k951112




    85.5k951112







    • 2




      Thank you so much,when I take $B=pmatrix{0&1\0&0 I got $a=d$, then we proved it :)
      – Dima
      Jul 19 at 11:41












    • 2




      Thank you so much,when I take $B=pmatrix{0&1\0&0 I got $a=d$, then we proved it :)
      – Dima
      Jul 19 at 11:41







    2




    2




    Thank you so much,when I take $B=pmatrix{0&1\0&0 I got $a=d$, then we proved it :)
    – Dima
    Jul 19 at 11:41




    Thank you so much,when I take $B=pmatrix{0&1\0&0 I got $a=d$, then we proved it :)
    – Dima
    Jul 19 at 11:41










    up vote
    3
    down vote













    Note:
    $$beginpmatrix a_11 & a_12 \ a_21 & a_22 endpmatrix
    beginpmatrix b_11 & b_12 \ b_21 & b_22 endpmatrix=
    beginpmatrix b_11 & b_12 \ b_21 & b_22 endpmatrix
    beginpmatrix a_11 & a_12 \ a_21 & a_22 endpmatrix Rightarrow \
    begincasesrequirecancelcancela_11b_11+a_12b_21=cancelb_11a_11+b_12a_21\
    a_11b_12+a_12b_22=b_11a_12+b_12a_22\
    a_21b_11+a_22b_21=b_21a_11+b_22a_21\
    a_21b_12+cancela_22b_22=b_21a_12+cancelb_22a_22endcases$$
    From $(1)$, since $b_12$ and $b_21$ can be any number, in particular, $b_12=0$ and $b_21ne 0$, we get: $a_12=0$.



    Similarly, for $b_12ne 0$ and $b_21=0$, we get $a_21=0$.



    From $(2)$, since $a_12=0$ and $b_12$ is an arbitrary number, we get $a_11b_12=b_12a_22 Rightarrow a_11=a_22$.






    share|cite|improve this answer

























      up vote
      3
      down vote













      Note:
      $$beginpmatrix a_11 & a_12 \ a_21 & a_22 endpmatrix
      beginpmatrix b_11 & b_12 \ b_21 & b_22 endpmatrix=
      beginpmatrix b_11 & b_12 \ b_21 & b_22 endpmatrix
      beginpmatrix a_11 & a_12 \ a_21 & a_22 endpmatrix Rightarrow \
      begincasesrequirecancelcancela_11b_11+a_12b_21=cancelb_11a_11+b_12a_21\
      a_11b_12+a_12b_22=b_11a_12+b_12a_22\
      a_21b_11+a_22b_21=b_21a_11+b_22a_21\
      a_21b_12+cancela_22b_22=b_21a_12+cancelb_22a_22endcases$$
      From $(1)$, since $b_12$ and $b_21$ can be any number, in particular, $b_12=0$ and $b_21ne 0$, we get: $a_12=0$.



      Similarly, for $b_12ne 0$ and $b_21=0$, we get $a_21=0$.



      From $(2)$, since $a_12=0$ and $b_12$ is an arbitrary number, we get $a_11b_12=b_12a_22 Rightarrow a_11=a_22$.






      share|cite|improve this answer























        up vote
        3
        down vote










        up vote
        3
        down vote









        Note:
        $$beginpmatrix a_11 & a_12 \ a_21 & a_22 endpmatrix
        beginpmatrix b_11 & b_12 \ b_21 & b_22 endpmatrix=
        beginpmatrix b_11 & b_12 \ b_21 & b_22 endpmatrix
        beginpmatrix a_11 & a_12 \ a_21 & a_22 endpmatrix Rightarrow \
        begincasesrequirecancelcancela_11b_11+a_12b_21=cancelb_11a_11+b_12a_21\
        a_11b_12+a_12b_22=b_11a_12+b_12a_22\
        a_21b_11+a_22b_21=b_21a_11+b_22a_21\
        a_21b_12+cancela_22b_22=b_21a_12+cancelb_22a_22endcases$$
        From $(1)$, since $b_12$ and $b_21$ can be any number, in particular, $b_12=0$ and $b_21ne 0$, we get: $a_12=0$.



        Similarly, for $b_12ne 0$ and $b_21=0$, we get $a_21=0$.



        From $(2)$, since $a_12=0$ and $b_12$ is an arbitrary number, we get $a_11b_12=b_12a_22 Rightarrow a_11=a_22$.






        share|cite|improve this answer













        Note:
        $$beginpmatrix a_11 & a_12 \ a_21 & a_22 endpmatrix
        beginpmatrix b_11 & b_12 \ b_21 & b_22 endpmatrix=
        beginpmatrix b_11 & b_12 \ b_21 & b_22 endpmatrix
        beginpmatrix a_11 & a_12 \ a_21 & a_22 endpmatrix Rightarrow \
        begincasesrequirecancelcancela_11b_11+a_12b_21=cancelb_11a_11+b_12a_21\
        a_11b_12+a_12b_22=b_11a_12+b_12a_22\
        a_21b_11+a_22b_21=b_21a_11+b_22a_21\
        a_21b_12+cancela_22b_22=b_21a_12+cancelb_22a_22endcases$$
        From $(1)$, since $b_12$ and $b_21$ can be any number, in particular, $b_12=0$ and $b_21ne 0$, we get: $a_12=0$.



        Similarly, for $b_12ne 0$ and $b_21=0$, we get $a_21=0$.



        From $(2)$, since $a_12=0$ and $b_12$ is an arbitrary number, we get $a_11b_12=b_12a_22 Rightarrow a_11=a_22$.







        share|cite|improve this answer













        share|cite|improve this answer



        share|cite|improve this answer











        answered Jul 19 at 11:50









        farruhota

        13.7k2632




        13.7k2632






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2856509%2fif-ab-ba-prove-that-a-beginbmatrix-a-0-0-a-endbmatrix%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What is the equation of a 3D cone with generalised tilt?

            Color the edges and diagonals of a regular polygon

            Relationship between determinant of matrix and determinant of adjoint?