In a triangle $angle A = 2angle B$ iff $a^2 = b(b+c)$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
5
down vote

favorite












Prove that in a triangle $ABC$, $angle A = angle 2B$, if and only if:



$$a^2 = b(b+c)$$



where $a, b, c$ are the sides opposite to $A, B, C$ respectively.



I attacked the problem using the Law of Sines, and tried to prove that if $angle A$ was indeed equal to $2angle B$ then the above equation would hold true. Then we can prove the converse of this to complete the proof.



From the Law of Sines,



$$a = 2Rsin A = 2Rsin (2B) = 4Rsin Bcos B$$



$$b = 2Rsin B$$



$$c = 2Rsin C = 2Rsin(180 - 3B) = 2Rsin(3B) = 2R(sin Bcos(2B) + sin(2B)cos B)$$



$$=2R(sin B(1 - 2sin^2 B) +2sin Bcos^2 B) = 2R(sin B -2sin^3 B + 2sin B(1 - sin^2B))$$



$$=boxed2R(3sin B - 4sin^3 B)$$



Now,



$$implies b(b+c) = 2Rsin B[2Rsin B + 2R(3sin B - 4sin^3 B)]$$



$$=4R^2sin^2 B(1 + 3 - 4sin^2 B)$$



$$=16R^2sin^2 Bcos^2 B = a^2$$



Now, to prove the converse:



$$c = 2Rsin C = 2Rsin (180 - (A + B)) = 2Rsin(A+B) = 2Rsin Acos B + 2Rsin Bcos A$$



$$a^2 = b(b+c)$$



$$implies 4R^2sin^2 A = 2Rsin B(2Rsin B + 2Rsin Acos B + 2Rsin Bcos) $$



$$ = 4R^2sin B(sin B + sin Acos B + sin Bcos A)$$



I have no idea how to proceed from here. I tried replacing $sin A$ with $sqrt1 - cos^2 B$, but that doesn't yield any useful results.







share|cite|improve this question























    up vote
    5
    down vote

    favorite












    Prove that in a triangle $ABC$, $angle A = angle 2B$, if and only if:



    $$a^2 = b(b+c)$$



    where $a, b, c$ are the sides opposite to $A, B, C$ respectively.



    I attacked the problem using the Law of Sines, and tried to prove that if $angle A$ was indeed equal to $2angle B$ then the above equation would hold true. Then we can prove the converse of this to complete the proof.



    From the Law of Sines,



    $$a = 2Rsin A = 2Rsin (2B) = 4Rsin Bcos B$$



    $$b = 2Rsin B$$



    $$c = 2Rsin C = 2Rsin(180 - 3B) = 2Rsin(3B) = 2R(sin Bcos(2B) + sin(2B)cos B)$$



    $$=2R(sin B(1 - 2sin^2 B) +2sin Bcos^2 B) = 2R(sin B -2sin^3 B + 2sin B(1 - sin^2B))$$



    $$=boxed2R(3sin B - 4sin^3 B)$$



    Now,



    $$implies b(b+c) = 2Rsin B[2Rsin B + 2R(3sin B - 4sin^3 B)]$$



    $$=4R^2sin^2 B(1 + 3 - 4sin^2 B)$$



    $$=16R^2sin^2 Bcos^2 B = a^2$$



    Now, to prove the converse:



    $$c = 2Rsin C = 2Rsin (180 - (A + B)) = 2Rsin(A+B) = 2Rsin Acos B + 2Rsin Bcos A$$



    $$a^2 = b(b+c)$$



    $$implies 4R^2sin^2 A = 2Rsin B(2Rsin B + 2Rsin Acos B + 2Rsin Bcos) $$



    $$ = 4R^2sin B(sin B + sin Acos B + sin Bcos A)$$



    I have no idea how to proceed from here. I tried replacing $sin A$ with $sqrt1 - cos^2 B$, but that doesn't yield any useful results.







    share|cite|improve this question





















      up vote
      5
      down vote

      favorite









      up vote
      5
      down vote

      favorite











      Prove that in a triangle $ABC$, $angle A = angle 2B$, if and only if:



      $$a^2 = b(b+c)$$



      where $a, b, c$ are the sides opposite to $A, B, C$ respectively.



      I attacked the problem using the Law of Sines, and tried to prove that if $angle A$ was indeed equal to $2angle B$ then the above equation would hold true. Then we can prove the converse of this to complete the proof.



      From the Law of Sines,



      $$a = 2Rsin A = 2Rsin (2B) = 4Rsin Bcos B$$



      $$b = 2Rsin B$$



      $$c = 2Rsin C = 2Rsin(180 - 3B) = 2Rsin(3B) = 2R(sin Bcos(2B) + sin(2B)cos B)$$



      $$=2R(sin B(1 - 2sin^2 B) +2sin Bcos^2 B) = 2R(sin B -2sin^3 B + 2sin B(1 - sin^2B))$$



      $$=boxed2R(3sin B - 4sin^3 B)$$



      Now,



      $$implies b(b+c) = 2Rsin B[2Rsin B + 2R(3sin B - 4sin^3 B)]$$



      $$=4R^2sin^2 B(1 + 3 - 4sin^2 B)$$



      $$=16R^2sin^2 Bcos^2 B = a^2$$



      Now, to prove the converse:



      $$c = 2Rsin C = 2Rsin (180 - (A + B)) = 2Rsin(A+B) = 2Rsin Acos B + 2Rsin Bcos A$$



      $$a^2 = b(b+c)$$



      $$implies 4R^2sin^2 A = 2Rsin B(2Rsin B + 2Rsin Acos B + 2Rsin Bcos) $$



      $$ = 4R^2sin B(sin B + sin Acos B + sin Bcos A)$$



      I have no idea how to proceed from here. I tried replacing $sin A$ with $sqrt1 - cos^2 B$, but that doesn't yield any useful results.







      share|cite|improve this question











      Prove that in a triangle $ABC$, $angle A = angle 2B$, if and only if:



      $$a^2 = b(b+c)$$



      where $a, b, c$ are the sides opposite to $A, B, C$ respectively.



      I attacked the problem using the Law of Sines, and tried to prove that if $angle A$ was indeed equal to $2angle B$ then the above equation would hold true. Then we can prove the converse of this to complete the proof.



      From the Law of Sines,



      $$a = 2Rsin A = 2Rsin (2B) = 4Rsin Bcos B$$



      $$b = 2Rsin B$$



      $$c = 2Rsin C = 2Rsin(180 - 3B) = 2Rsin(3B) = 2R(sin Bcos(2B) + sin(2B)cos B)$$



      $$=2R(sin B(1 - 2sin^2 B) +2sin Bcos^2 B) = 2R(sin B -2sin^3 B + 2sin B(1 - sin^2B))$$



      $$=boxed2R(3sin B - 4sin^3 B)$$



      Now,



      $$implies b(b+c) = 2Rsin B[2Rsin B + 2R(3sin B - 4sin^3 B)]$$



      $$=4R^2sin^2 B(1 + 3 - 4sin^2 B)$$



      $$=16R^2sin^2 Bcos^2 B = a^2$$



      Now, to prove the converse:



      $$c = 2Rsin C = 2Rsin (180 - (A + B)) = 2Rsin(A+B) = 2Rsin Acos B + 2Rsin Bcos A$$



      $$a^2 = b(b+c)$$



      $$implies 4R^2sin^2 A = 2Rsin B(2Rsin B + 2Rsin Acos B + 2Rsin Bcos) $$



      $$ = 4R^2sin B(sin B + sin Acos B + sin Bcos A)$$



      I have no idea how to proceed from here. I tried replacing $sin A$ with $sqrt1 - cos^2 B$, but that doesn't yield any useful results.









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked Nov 9 '13 at 7:00









      Gerard

      1,97021333




      1,97021333




















          3 Answers
          3






          active

          oldest

          votes

















          up vote
          2
          down vote



          accepted










          $$a^2-b^2=bcimplies sin^2A-sin^2B=sin Bsin Ctext as Rne0$$



          Now, $displaystylesin^2A-sin^2B=sin(A+B)sin(A-B)=sin(pi-C)sin(A-B)=sin Csin(A-B) (1)$



          $$implies sin Bsin C=sin Csin(A-B)$$



          $$implies sin B=sin(A-B)text as sin Cne0$$



          $$implies B=npi+(-1)^n(A-B)text where ntext is any integer $$



          If $n$ is even, $n=2m$(say) $implies B=2mpi+A-Biff A=2B-2mpi=2B$ as $0<A,B<pi$



          If $n$ is odd, $n=2m+1$(say) $implies B=(2m+1)pi-(A-B)iff A=(2m+1)pi$ which is impossible as $0<A<pi$



          Conversely, if $A=2B$



          $displaystyleimplies a^2-b^2=4R^2(sin^2A-sin^2B)=4R^2sin Csin(A-B)$ (using $(1)$)



          $displaystyle=4R^2sin Csin(2B-B)=2Rsin Bcdot 2Rsin C=cdots$






          share|cite|improve this answer






























            up vote
            8
            down vote













            enter image description here



            1) $angle A=2angle B$

            angle bisector of $angle A$ cut $BC$ at $D$ $Longrightarrow$ $dfracCDDB=dfracbc$

            thus, $CD=dfracbb+ca$

            also, $triangle CADsimtriangle CAB$ $Longrightarrow$ $CA^2=CDcdot CB$

            hence, $b^2=dfracbb+cacdot a$ $Longrightarrow$ $a^2=b(b+c)$



            2) $a^2=b(b+c)$

            angle bisector of $angle A$ cut $BC$ at $D$ $Longrightarrow$ $dfracCDDB=dfracbc$ $Longrightarrow$ $CD=dfracbb+ca$

            $a^2=b(b+c)$ $Longrightarrow$ $dfracab=dfracb+ca=dfracbdfracbb+ca$ $Longrightarrow$ $dfracBCCA=dfracCACD$ and $angle DCA=angle ACB$

            thus, $triangle ACDsimtriangle ACB$ $Longrightarrow$ $angle CAD=angle CBA$ $Longrightarrow$ $angle A=2angle B$






            share|cite|improve this answer





















            • Very elegant solution. How did you produce the drawing?
              – Gerard
              Nov 9 '13 at 9:12










            • This answer can be streamlined a bit. Regardless of the bisector status of $overlineAD$ (but still assuming $overlineAD$ in $angle BAC$'s interior), we have $angle BAC cong angle ADC$, so that $triangle BAC sim angle ADC$ and $$fracb = fracba$$ Then $$beginalign overlineAD text bisects angle A quad &Leftrightarrow qquad fracb = fraca-c \[4pt] &Leftrightarrow qquad fracb^2/ab = fraca-b^2/ac \[4pt] &Leftrightarrow qquad a^2 = bleft( b + c right ) endalign$$
              – Blue
              Nov 10 '13 at 2:18

















            up vote
            2
            down vote













            Double angle formula says
            $$
            beginalign
            sin(A)
            &=2sin(B)cos(B)\
            &impliesfracsin(A)sin(B)=2cos(B)tag1
            endalign
            $$
            The formula for the sine of a sum yields
            $$
            beginalign
            sin(C)
            &=sin(A+B)\
            &=2sin(B)cos(B)cos(B)+(2cos^2(B)-1)sin(B)\
            &=sin(B)(4cos^2(B)-1)\
            &impliesfracsin(C)sin(B)=4cos^2(B)-1tag2
            endalign
            $$
            Thus, the Law of Sines says
            $$
            left(frac abright)^2-1=frac cbimplies a^2-b^2=bctag3
            $$






            share|cite|improve this answer





















              Your Answer




              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: false,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );








               

              draft saved


              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f557704%2fin-a-triangle-angle-a-2-angle-b-iff-a2-bbc%23new-answer', 'question_page');

              );

              Post as a guest






























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              2
              down vote



              accepted










              $$a^2-b^2=bcimplies sin^2A-sin^2B=sin Bsin Ctext as Rne0$$



              Now, $displaystylesin^2A-sin^2B=sin(A+B)sin(A-B)=sin(pi-C)sin(A-B)=sin Csin(A-B) (1)$



              $$implies sin Bsin C=sin Csin(A-B)$$



              $$implies sin B=sin(A-B)text as sin Cne0$$



              $$implies B=npi+(-1)^n(A-B)text where ntext is any integer $$



              If $n$ is even, $n=2m$(say) $implies B=2mpi+A-Biff A=2B-2mpi=2B$ as $0<A,B<pi$



              If $n$ is odd, $n=2m+1$(say) $implies B=(2m+1)pi-(A-B)iff A=(2m+1)pi$ which is impossible as $0<A<pi$



              Conversely, if $A=2B$



              $displaystyleimplies a^2-b^2=4R^2(sin^2A-sin^2B)=4R^2sin Csin(A-B)$ (using $(1)$)



              $displaystyle=4R^2sin Csin(2B-B)=2Rsin Bcdot 2Rsin C=cdots$






              share|cite|improve this answer



























                up vote
                2
                down vote



                accepted










                $$a^2-b^2=bcimplies sin^2A-sin^2B=sin Bsin Ctext as Rne0$$



                Now, $displaystylesin^2A-sin^2B=sin(A+B)sin(A-B)=sin(pi-C)sin(A-B)=sin Csin(A-B) (1)$



                $$implies sin Bsin C=sin Csin(A-B)$$



                $$implies sin B=sin(A-B)text as sin Cne0$$



                $$implies B=npi+(-1)^n(A-B)text where ntext is any integer $$



                If $n$ is even, $n=2m$(say) $implies B=2mpi+A-Biff A=2B-2mpi=2B$ as $0<A,B<pi$



                If $n$ is odd, $n=2m+1$(say) $implies B=(2m+1)pi-(A-B)iff A=(2m+1)pi$ which is impossible as $0<A<pi$



                Conversely, if $A=2B$



                $displaystyleimplies a^2-b^2=4R^2(sin^2A-sin^2B)=4R^2sin Csin(A-B)$ (using $(1)$)



                $displaystyle=4R^2sin Csin(2B-B)=2Rsin Bcdot 2Rsin C=cdots$






                share|cite|improve this answer

























                  up vote
                  2
                  down vote



                  accepted







                  up vote
                  2
                  down vote



                  accepted






                  $$a^2-b^2=bcimplies sin^2A-sin^2B=sin Bsin Ctext as Rne0$$



                  Now, $displaystylesin^2A-sin^2B=sin(A+B)sin(A-B)=sin(pi-C)sin(A-B)=sin Csin(A-B) (1)$



                  $$implies sin Bsin C=sin Csin(A-B)$$



                  $$implies sin B=sin(A-B)text as sin Cne0$$



                  $$implies B=npi+(-1)^n(A-B)text where ntext is any integer $$



                  If $n$ is even, $n=2m$(say) $implies B=2mpi+A-Biff A=2B-2mpi=2B$ as $0<A,B<pi$



                  If $n$ is odd, $n=2m+1$(say) $implies B=(2m+1)pi-(A-B)iff A=(2m+1)pi$ which is impossible as $0<A<pi$



                  Conversely, if $A=2B$



                  $displaystyleimplies a^2-b^2=4R^2(sin^2A-sin^2B)=4R^2sin Csin(A-B)$ (using $(1)$)



                  $displaystyle=4R^2sin Csin(2B-B)=2Rsin Bcdot 2Rsin C=cdots$






                  share|cite|improve this answer















                  $$a^2-b^2=bcimplies sin^2A-sin^2B=sin Bsin Ctext as Rne0$$



                  Now, $displaystylesin^2A-sin^2B=sin(A+B)sin(A-B)=sin(pi-C)sin(A-B)=sin Csin(A-B) (1)$



                  $$implies sin Bsin C=sin Csin(A-B)$$



                  $$implies sin B=sin(A-B)text as sin Cne0$$



                  $$implies B=npi+(-1)^n(A-B)text where ntext is any integer $$



                  If $n$ is even, $n=2m$(say) $implies B=2mpi+A-Biff A=2B-2mpi=2B$ as $0<A,B<pi$



                  If $n$ is odd, $n=2m+1$(say) $implies B=(2m+1)pi-(A-B)iff A=(2m+1)pi$ which is impossible as $0<A<pi$



                  Conversely, if $A=2B$



                  $displaystyleimplies a^2-b^2=4R^2(sin^2A-sin^2B)=4R^2sin Csin(A-B)$ (using $(1)$)



                  $displaystyle=4R^2sin Csin(2B-B)=2Rsin Bcdot 2Rsin C=cdots$







                  share|cite|improve this answer















                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Nov 9 '13 at 7:14


























                  answered Nov 9 '13 at 7:09









                  lab bhattacharjee

                  215k14152264




                  215k14152264




















                      up vote
                      8
                      down vote













                      enter image description here



                      1) $angle A=2angle B$

                      angle bisector of $angle A$ cut $BC$ at $D$ $Longrightarrow$ $dfracCDDB=dfracbc$

                      thus, $CD=dfracbb+ca$

                      also, $triangle CADsimtriangle CAB$ $Longrightarrow$ $CA^2=CDcdot CB$

                      hence, $b^2=dfracbb+cacdot a$ $Longrightarrow$ $a^2=b(b+c)$



                      2) $a^2=b(b+c)$

                      angle bisector of $angle A$ cut $BC$ at $D$ $Longrightarrow$ $dfracCDDB=dfracbc$ $Longrightarrow$ $CD=dfracbb+ca$

                      $a^2=b(b+c)$ $Longrightarrow$ $dfracab=dfracb+ca=dfracbdfracbb+ca$ $Longrightarrow$ $dfracBCCA=dfracCACD$ and $angle DCA=angle ACB$

                      thus, $triangle ACDsimtriangle ACB$ $Longrightarrow$ $angle CAD=angle CBA$ $Longrightarrow$ $angle A=2angle B$






                      share|cite|improve this answer





















                      • Very elegant solution. How did you produce the drawing?
                        – Gerard
                        Nov 9 '13 at 9:12










                      • This answer can be streamlined a bit. Regardless of the bisector status of $overlineAD$ (but still assuming $overlineAD$ in $angle BAC$'s interior), we have $angle BAC cong angle ADC$, so that $triangle BAC sim angle ADC$ and $$fracb = fracba$$ Then $$beginalign overlineAD text bisects angle A quad &Leftrightarrow qquad fracb = fraca-c \[4pt] &Leftrightarrow qquad fracb^2/ab = fraca-b^2/ac \[4pt] &Leftrightarrow qquad a^2 = bleft( b + c right ) endalign$$
                        – Blue
                        Nov 10 '13 at 2:18














                      up vote
                      8
                      down vote













                      enter image description here



                      1) $angle A=2angle B$

                      angle bisector of $angle A$ cut $BC$ at $D$ $Longrightarrow$ $dfracCDDB=dfracbc$

                      thus, $CD=dfracbb+ca$

                      also, $triangle CADsimtriangle CAB$ $Longrightarrow$ $CA^2=CDcdot CB$

                      hence, $b^2=dfracbb+cacdot a$ $Longrightarrow$ $a^2=b(b+c)$



                      2) $a^2=b(b+c)$

                      angle bisector of $angle A$ cut $BC$ at $D$ $Longrightarrow$ $dfracCDDB=dfracbc$ $Longrightarrow$ $CD=dfracbb+ca$

                      $a^2=b(b+c)$ $Longrightarrow$ $dfracab=dfracb+ca=dfracbdfracbb+ca$ $Longrightarrow$ $dfracBCCA=dfracCACD$ and $angle DCA=angle ACB$

                      thus, $triangle ACDsimtriangle ACB$ $Longrightarrow$ $angle CAD=angle CBA$ $Longrightarrow$ $angle A=2angle B$






                      share|cite|improve this answer





















                      • Very elegant solution. How did you produce the drawing?
                        – Gerard
                        Nov 9 '13 at 9:12










                      • This answer can be streamlined a bit. Regardless of the bisector status of $overlineAD$ (but still assuming $overlineAD$ in $angle BAC$'s interior), we have $angle BAC cong angle ADC$, so that $triangle BAC sim angle ADC$ and $$fracb = fracba$$ Then $$beginalign overlineAD text bisects angle A quad &Leftrightarrow qquad fracb = fraca-c \[4pt] &Leftrightarrow qquad fracb^2/ab = fraca-b^2/ac \[4pt] &Leftrightarrow qquad a^2 = bleft( b + c right ) endalign$$
                        – Blue
                        Nov 10 '13 at 2:18












                      up vote
                      8
                      down vote










                      up vote
                      8
                      down vote









                      enter image description here



                      1) $angle A=2angle B$

                      angle bisector of $angle A$ cut $BC$ at $D$ $Longrightarrow$ $dfracCDDB=dfracbc$

                      thus, $CD=dfracbb+ca$

                      also, $triangle CADsimtriangle CAB$ $Longrightarrow$ $CA^2=CDcdot CB$

                      hence, $b^2=dfracbb+cacdot a$ $Longrightarrow$ $a^2=b(b+c)$



                      2) $a^2=b(b+c)$

                      angle bisector of $angle A$ cut $BC$ at $D$ $Longrightarrow$ $dfracCDDB=dfracbc$ $Longrightarrow$ $CD=dfracbb+ca$

                      $a^2=b(b+c)$ $Longrightarrow$ $dfracab=dfracb+ca=dfracbdfracbb+ca$ $Longrightarrow$ $dfracBCCA=dfracCACD$ and $angle DCA=angle ACB$

                      thus, $triangle ACDsimtriangle ACB$ $Longrightarrow$ $angle CAD=angle CBA$ $Longrightarrow$ $angle A=2angle B$






                      share|cite|improve this answer













                      enter image description here



                      1) $angle A=2angle B$

                      angle bisector of $angle A$ cut $BC$ at $D$ $Longrightarrow$ $dfracCDDB=dfracbc$

                      thus, $CD=dfracbb+ca$

                      also, $triangle CADsimtriangle CAB$ $Longrightarrow$ $CA^2=CDcdot CB$

                      hence, $b^2=dfracbb+cacdot a$ $Longrightarrow$ $a^2=b(b+c)$



                      2) $a^2=b(b+c)$

                      angle bisector of $angle A$ cut $BC$ at $D$ $Longrightarrow$ $dfracCDDB=dfracbc$ $Longrightarrow$ $CD=dfracbb+ca$

                      $a^2=b(b+c)$ $Longrightarrow$ $dfracab=dfracb+ca=dfracbdfracbb+ca$ $Longrightarrow$ $dfracBCCA=dfracCACD$ and $angle DCA=angle ACB$

                      thus, $triangle ACDsimtriangle ACB$ $Longrightarrow$ $angle CAD=angle CBA$ $Longrightarrow$ $angle A=2angle B$







                      share|cite|improve this answer













                      share|cite|improve this answer



                      share|cite|improve this answer











                      answered Nov 9 '13 at 8:43









                      chloe_shi

                      1,947712




                      1,947712











                      • Very elegant solution. How did you produce the drawing?
                        – Gerard
                        Nov 9 '13 at 9:12










                      • This answer can be streamlined a bit. Regardless of the bisector status of $overlineAD$ (but still assuming $overlineAD$ in $angle BAC$'s interior), we have $angle BAC cong angle ADC$, so that $triangle BAC sim angle ADC$ and $$fracb = fracba$$ Then $$beginalign overlineAD text bisects angle A quad &Leftrightarrow qquad fracb = fraca-c \[4pt] &Leftrightarrow qquad fracb^2/ab = fraca-b^2/ac \[4pt] &Leftrightarrow qquad a^2 = bleft( b + c right ) endalign$$
                        – Blue
                        Nov 10 '13 at 2:18
















                      • Very elegant solution. How did you produce the drawing?
                        – Gerard
                        Nov 9 '13 at 9:12










                      • This answer can be streamlined a bit. Regardless of the bisector status of $overlineAD$ (but still assuming $overlineAD$ in $angle BAC$'s interior), we have $angle BAC cong angle ADC$, so that $triangle BAC sim angle ADC$ and $$fracb = fracba$$ Then $$beginalign overlineAD text bisects angle A quad &Leftrightarrow qquad fracb = fraca-c \[4pt] &Leftrightarrow qquad fracb^2/ab = fraca-b^2/ac \[4pt] &Leftrightarrow qquad a^2 = bleft( b + c right ) endalign$$
                        – Blue
                        Nov 10 '13 at 2:18















                      Very elegant solution. How did you produce the drawing?
                      – Gerard
                      Nov 9 '13 at 9:12




                      Very elegant solution. How did you produce the drawing?
                      – Gerard
                      Nov 9 '13 at 9:12












                      This answer can be streamlined a bit. Regardless of the bisector status of $overlineAD$ (but still assuming $overlineAD$ in $angle BAC$'s interior), we have $angle BAC cong angle ADC$, so that $triangle BAC sim angle ADC$ and $$fracb = fracba$$ Then $$beginalign overlineAD text bisects angle A quad &Leftrightarrow qquad fracb = fraca-c \[4pt] &Leftrightarrow qquad fracb^2/ab = fraca-b^2/ac \[4pt] &Leftrightarrow qquad a^2 = bleft( b + c right ) endalign$$
                      – Blue
                      Nov 10 '13 at 2:18




                      This answer can be streamlined a bit. Regardless of the bisector status of $overlineAD$ (but still assuming $overlineAD$ in $angle BAC$'s interior), we have $angle BAC cong angle ADC$, so that $triangle BAC sim angle ADC$ and $$fracb = fracba$$ Then $$beginalign overlineAD text bisects angle A quad &Leftrightarrow qquad fracb = fraca-c \[4pt] &Leftrightarrow qquad fracb^2/ab = fraca-b^2/ac \[4pt] &Leftrightarrow qquad a^2 = bleft( b + c right ) endalign$$
                      – Blue
                      Nov 10 '13 at 2:18










                      up vote
                      2
                      down vote













                      Double angle formula says
                      $$
                      beginalign
                      sin(A)
                      &=2sin(B)cos(B)\
                      &impliesfracsin(A)sin(B)=2cos(B)tag1
                      endalign
                      $$
                      The formula for the sine of a sum yields
                      $$
                      beginalign
                      sin(C)
                      &=sin(A+B)\
                      &=2sin(B)cos(B)cos(B)+(2cos^2(B)-1)sin(B)\
                      &=sin(B)(4cos^2(B)-1)\
                      &impliesfracsin(C)sin(B)=4cos^2(B)-1tag2
                      endalign
                      $$
                      Thus, the Law of Sines says
                      $$
                      left(frac abright)^2-1=frac cbimplies a^2-b^2=bctag3
                      $$






                      share|cite|improve this answer

























                        up vote
                        2
                        down vote













                        Double angle formula says
                        $$
                        beginalign
                        sin(A)
                        &=2sin(B)cos(B)\
                        &impliesfracsin(A)sin(B)=2cos(B)tag1
                        endalign
                        $$
                        The formula for the sine of a sum yields
                        $$
                        beginalign
                        sin(C)
                        &=sin(A+B)\
                        &=2sin(B)cos(B)cos(B)+(2cos^2(B)-1)sin(B)\
                        &=sin(B)(4cos^2(B)-1)\
                        &impliesfracsin(C)sin(B)=4cos^2(B)-1tag2
                        endalign
                        $$
                        Thus, the Law of Sines says
                        $$
                        left(frac abright)^2-1=frac cbimplies a^2-b^2=bctag3
                        $$






                        share|cite|improve this answer























                          up vote
                          2
                          down vote










                          up vote
                          2
                          down vote









                          Double angle formula says
                          $$
                          beginalign
                          sin(A)
                          &=2sin(B)cos(B)\
                          &impliesfracsin(A)sin(B)=2cos(B)tag1
                          endalign
                          $$
                          The formula for the sine of a sum yields
                          $$
                          beginalign
                          sin(C)
                          &=sin(A+B)\
                          &=2sin(B)cos(B)cos(B)+(2cos^2(B)-1)sin(B)\
                          &=sin(B)(4cos^2(B)-1)\
                          &impliesfracsin(C)sin(B)=4cos^2(B)-1tag2
                          endalign
                          $$
                          Thus, the Law of Sines says
                          $$
                          left(frac abright)^2-1=frac cbimplies a^2-b^2=bctag3
                          $$






                          share|cite|improve this answer













                          Double angle formula says
                          $$
                          beginalign
                          sin(A)
                          &=2sin(B)cos(B)\
                          &impliesfracsin(A)sin(B)=2cos(B)tag1
                          endalign
                          $$
                          The formula for the sine of a sum yields
                          $$
                          beginalign
                          sin(C)
                          &=sin(A+B)\
                          &=2sin(B)cos(B)cos(B)+(2cos^2(B)-1)sin(B)\
                          &=sin(B)(4cos^2(B)-1)\
                          &impliesfracsin(C)sin(B)=4cos^2(B)-1tag2
                          endalign
                          $$
                          Thus, the Law of Sines says
                          $$
                          left(frac abright)^2-1=frac cbimplies a^2-b^2=bctag3
                          $$







                          share|cite|improve this answer













                          share|cite|improve this answer



                          share|cite|improve this answer











                          answered Mar 12 '14 at 21:43









                          robjohn♦

                          258k26297612




                          258k26297612






















                               

                              draft saved


                              draft discarded


























                               


                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f557704%2fin-a-triangle-angle-a-2-angle-b-iff-a2-bbc%23new-answer', 'question_page');

                              );

                              Post as a guest













































































                              Comments

                              Popular posts from this blog

                              What is the equation of a 3D cone with generalised tilt?

                              Color the edges and diagonals of a regular polygon

                              Relationship between determinant of matrix and determinant of adjoint?