In a triangle $angle A = 2angle B$ iff $a^2 = b(b+c)$
Clash Royale CLAN TAG#URR8PPP
up vote
5
down vote
favorite
Prove that in a triangle $ABC$, $angle A = angle 2B$, if and only if:
$$a^2 = b(b+c)$$
where $a, b, c$ are the sides opposite to $A, B, C$ respectively.
I attacked the problem using the Law of Sines, and tried to prove that if $angle A$ was indeed equal to $2angle B$ then the above equation would hold true. Then we can prove the converse of this to complete the proof.
From the Law of Sines,
$$a = 2Rsin A = 2Rsin (2B) = 4Rsin Bcos B$$
$$b = 2Rsin B$$
$$c = 2Rsin C = 2Rsin(180 - 3B) = 2Rsin(3B) = 2R(sin Bcos(2B) + sin(2B)cos B)$$
$$=2R(sin B(1 - 2sin^2 B) +2sin Bcos^2 B) = 2R(sin B -2sin^3 B + 2sin B(1 - sin^2B))$$
$$=boxed2R(3sin B - 4sin^3 B)$$
Now,
$$implies b(b+c) = 2Rsin B[2Rsin B + 2R(3sin B - 4sin^3 B)]$$
$$=4R^2sin^2 B(1 + 3 - 4sin^2 B)$$
$$=16R^2sin^2 Bcos^2 B = a^2$$
Now, to prove the converse:
$$c = 2Rsin C = 2Rsin (180 - (A + B)) = 2Rsin(A+B) = 2Rsin Acos B + 2Rsin Bcos A$$
$$a^2 = b(b+c)$$
$$implies 4R^2sin^2 A = 2Rsin B(2Rsin B + 2Rsin Acos B + 2Rsin Bcos) $$
$$ = 4R^2sin B(sin B + sin Acos B + sin Bcos A)$$
I have no idea how to proceed from here. I tried replacing $sin A$ with $sqrt1 - cos^2 B$, but that doesn't yield any useful results.
geometry trigonometry
add a comment |Â
up vote
5
down vote
favorite
Prove that in a triangle $ABC$, $angle A = angle 2B$, if and only if:
$$a^2 = b(b+c)$$
where $a, b, c$ are the sides opposite to $A, B, C$ respectively.
I attacked the problem using the Law of Sines, and tried to prove that if $angle A$ was indeed equal to $2angle B$ then the above equation would hold true. Then we can prove the converse of this to complete the proof.
From the Law of Sines,
$$a = 2Rsin A = 2Rsin (2B) = 4Rsin Bcos B$$
$$b = 2Rsin B$$
$$c = 2Rsin C = 2Rsin(180 - 3B) = 2Rsin(3B) = 2R(sin Bcos(2B) + sin(2B)cos B)$$
$$=2R(sin B(1 - 2sin^2 B) +2sin Bcos^2 B) = 2R(sin B -2sin^3 B + 2sin B(1 - sin^2B))$$
$$=boxed2R(3sin B - 4sin^3 B)$$
Now,
$$implies b(b+c) = 2Rsin B[2Rsin B + 2R(3sin B - 4sin^3 B)]$$
$$=4R^2sin^2 B(1 + 3 - 4sin^2 B)$$
$$=16R^2sin^2 Bcos^2 B = a^2$$
Now, to prove the converse:
$$c = 2Rsin C = 2Rsin (180 - (A + B)) = 2Rsin(A+B) = 2Rsin Acos B + 2Rsin Bcos A$$
$$a^2 = b(b+c)$$
$$implies 4R^2sin^2 A = 2Rsin B(2Rsin B + 2Rsin Acos B + 2Rsin Bcos) $$
$$ = 4R^2sin B(sin B + sin Acos B + sin Bcos A)$$
I have no idea how to proceed from here. I tried replacing $sin A$ with $sqrt1 - cos^2 B$, but that doesn't yield any useful results.
geometry trigonometry
add a comment |Â
up vote
5
down vote
favorite
up vote
5
down vote
favorite
Prove that in a triangle $ABC$, $angle A = angle 2B$, if and only if:
$$a^2 = b(b+c)$$
where $a, b, c$ are the sides opposite to $A, B, C$ respectively.
I attacked the problem using the Law of Sines, and tried to prove that if $angle A$ was indeed equal to $2angle B$ then the above equation would hold true. Then we can prove the converse of this to complete the proof.
From the Law of Sines,
$$a = 2Rsin A = 2Rsin (2B) = 4Rsin Bcos B$$
$$b = 2Rsin B$$
$$c = 2Rsin C = 2Rsin(180 - 3B) = 2Rsin(3B) = 2R(sin Bcos(2B) + sin(2B)cos B)$$
$$=2R(sin B(1 - 2sin^2 B) +2sin Bcos^2 B) = 2R(sin B -2sin^3 B + 2sin B(1 - sin^2B))$$
$$=boxed2R(3sin B - 4sin^3 B)$$
Now,
$$implies b(b+c) = 2Rsin B[2Rsin B + 2R(3sin B - 4sin^3 B)]$$
$$=4R^2sin^2 B(1 + 3 - 4sin^2 B)$$
$$=16R^2sin^2 Bcos^2 B = a^2$$
Now, to prove the converse:
$$c = 2Rsin C = 2Rsin (180 - (A + B)) = 2Rsin(A+B) = 2Rsin Acos B + 2Rsin Bcos A$$
$$a^2 = b(b+c)$$
$$implies 4R^2sin^2 A = 2Rsin B(2Rsin B + 2Rsin Acos B + 2Rsin Bcos) $$
$$ = 4R^2sin B(sin B + sin Acos B + sin Bcos A)$$
I have no idea how to proceed from here. I tried replacing $sin A$ with $sqrt1 - cos^2 B$, but that doesn't yield any useful results.
geometry trigonometry
Prove that in a triangle $ABC$, $angle A = angle 2B$, if and only if:
$$a^2 = b(b+c)$$
where $a, b, c$ are the sides opposite to $A, B, C$ respectively.
I attacked the problem using the Law of Sines, and tried to prove that if $angle A$ was indeed equal to $2angle B$ then the above equation would hold true. Then we can prove the converse of this to complete the proof.
From the Law of Sines,
$$a = 2Rsin A = 2Rsin (2B) = 4Rsin Bcos B$$
$$b = 2Rsin B$$
$$c = 2Rsin C = 2Rsin(180 - 3B) = 2Rsin(3B) = 2R(sin Bcos(2B) + sin(2B)cos B)$$
$$=2R(sin B(1 - 2sin^2 B) +2sin Bcos^2 B) = 2R(sin B -2sin^3 B + 2sin B(1 - sin^2B))$$
$$=boxed2R(3sin B - 4sin^3 B)$$
Now,
$$implies b(b+c) = 2Rsin B[2Rsin B + 2R(3sin B - 4sin^3 B)]$$
$$=4R^2sin^2 B(1 + 3 - 4sin^2 B)$$
$$=16R^2sin^2 Bcos^2 B = a^2$$
Now, to prove the converse:
$$c = 2Rsin C = 2Rsin (180 - (A + B)) = 2Rsin(A+B) = 2Rsin Acos B + 2Rsin Bcos A$$
$$a^2 = b(b+c)$$
$$implies 4R^2sin^2 A = 2Rsin B(2Rsin B + 2Rsin Acos B + 2Rsin Bcos) $$
$$ = 4R^2sin B(sin B + sin Acos B + sin Bcos A)$$
I have no idea how to proceed from here. I tried replacing $sin A$ with $sqrt1 - cos^2 B$, but that doesn't yield any useful results.
geometry trigonometry
asked Nov 9 '13 at 7:00
Gerard
1,97021333
1,97021333
add a comment |Â
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
2
down vote
accepted
$$a^2-b^2=bcimplies sin^2A-sin^2B=sin Bsin Ctext as Rne0$$
Now, $displaystylesin^2A-sin^2B=sin(A+B)sin(A-B)=sin(pi-C)sin(A-B)=sin Csin(A-B) (1)$
$$implies sin Bsin C=sin Csin(A-B)$$
$$implies sin B=sin(A-B)text as sin Cne0$$
$$implies B=npi+(-1)^n(A-B)text where ntext is any integer $$
If $n$ is even, $n=2m$(say) $implies B=2mpi+A-Biff A=2B-2mpi=2B$ as $0<A,B<pi$
If $n$ is odd, $n=2m+1$(say) $implies B=(2m+1)pi-(A-B)iff A=(2m+1)pi$ which is impossible as $0<A<pi$
Conversely, if $A=2B$
$displaystyleimplies a^2-b^2=4R^2(sin^2A-sin^2B)=4R^2sin Csin(A-B)$ (using $(1)$)
$displaystyle=4R^2sin Csin(2B-B)=2Rsin Bcdot 2Rsin C=cdots$
add a comment |Â
up vote
8
down vote
1) $angle A=2angle B$
angle bisector of $angle A$ cut $BC$ at $D$ $Longrightarrow$ $dfracCDDB=dfracbc$
thus, $CD=dfracbb+ca$
also, $triangle CADsimtriangle CAB$ $Longrightarrow$ $CA^2=CDcdot CB$
hence, $b^2=dfracbb+cacdot a$ $Longrightarrow$ $a^2=b(b+c)$
2) $a^2=b(b+c)$
angle bisector of $angle A$ cut $BC$ at $D$ $Longrightarrow$ $dfracCDDB=dfracbc$ $Longrightarrow$ $CD=dfracbb+ca$
$a^2=b(b+c)$ $Longrightarrow$ $dfracab=dfracb+ca=dfracbdfracbb+ca$ $Longrightarrow$ $dfracBCCA=dfracCACD$ and $angle DCA=angle ACB$
thus, $triangle ACDsimtriangle ACB$ $Longrightarrow$ $angle CAD=angle CBA$ $Longrightarrow$ $angle A=2angle B$
Very elegant solution. How did you produce the drawing?
– Gerard
Nov 9 '13 at 9:12
This answer can be streamlined a bit. Regardless of the bisector status of $overlineAD$ (but still assuming $overlineAD$ in $angle BAC$'s interior), we have $angle BAC cong angle ADC$, so that $triangle BAC sim angle ADC$ and $$fracb = fracba$$ Then $$beginalign overlineAD text bisects angle A quad &Leftrightarrow qquad fracb = fraca-c \[4pt] &Leftrightarrow qquad fracb^2/ab = fraca-b^2/ac \[4pt] &Leftrightarrow qquad a^2 = bleft( b + c right ) endalign$$
– Blue
Nov 10 '13 at 2:18
add a comment |Â
up vote
2
down vote
Double angle formula says
$$
beginalign
sin(A)
&=2sin(B)cos(B)\
&impliesfracsin(A)sin(B)=2cos(B)tag1
endalign
$$
The formula for the sine of a sum yields
$$
beginalign
sin(C)
&=sin(A+B)\
&=2sin(B)cos(B)cos(B)+(2cos^2(B)-1)sin(B)\
&=sin(B)(4cos^2(B)-1)\
&impliesfracsin(C)sin(B)=4cos^2(B)-1tag2
endalign
$$
Thus, the Law of Sines says
$$
left(frac abright)^2-1=frac cbimplies a^2-b^2=bctag3
$$
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
$$a^2-b^2=bcimplies sin^2A-sin^2B=sin Bsin Ctext as Rne0$$
Now, $displaystylesin^2A-sin^2B=sin(A+B)sin(A-B)=sin(pi-C)sin(A-B)=sin Csin(A-B) (1)$
$$implies sin Bsin C=sin Csin(A-B)$$
$$implies sin B=sin(A-B)text as sin Cne0$$
$$implies B=npi+(-1)^n(A-B)text where ntext is any integer $$
If $n$ is even, $n=2m$(say) $implies B=2mpi+A-Biff A=2B-2mpi=2B$ as $0<A,B<pi$
If $n$ is odd, $n=2m+1$(say) $implies B=(2m+1)pi-(A-B)iff A=(2m+1)pi$ which is impossible as $0<A<pi$
Conversely, if $A=2B$
$displaystyleimplies a^2-b^2=4R^2(sin^2A-sin^2B)=4R^2sin Csin(A-B)$ (using $(1)$)
$displaystyle=4R^2sin Csin(2B-B)=2Rsin Bcdot 2Rsin C=cdots$
add a comment |Â
up vote
2
down vote
accepted
$$a^2-b^2=bcimplies sin^2A-sin^2B=sin Bsin Ctext as Rne0$$
Now, $displaystylesin^2A-sin^2B=sin(A+B)sin(A-B)=sin(pi-C)sin(A-B)=sin Csin(A-B) (1)$
$$implies sin Bsin C=sin Csin(A-B)$$
$$implies sin B=sin(A-B)text as sin Cne0$$
$$implies B=npi+(-1)^n(A-B)text where ntext is any integer $$
If $n$ is even, $n=2m$(say) $implies B=2mpi+A-Biff A=2B-2mpi=2B$ as $0<A,B<pi$
If $n$ is odd, $n=2m+1$(say) $implies B=(2m+1)pi-(A-B)iff A=(2m+1)pi$ which is impossible as $0<A<pi$
Conversely, if $A=2B$
$displaystyleimplies a^2-b^2=4R^2(sin^2A-sin^2B)=4R^2sin Csin(A-B)$ (using $(1)$)
$displaystyle=4R^2sin Csin(2B-B)=2Rsin Bcdot 2Rsin C=cdots$
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
$$a^2-b^2=bcimplies sin^2A-sin^2B=sin Bsin Ctext as Rne0$$
Now, $displaystylesin^2A-sin^2B=sin(A+B)sin(A-B)=sin(pi-C)sin(A-B)=sin Csin(A-B) (1)$
$$implies sin Bsin C=sin Csin(A-B)$$
$$implies sin B=sin(A-B)text as sin Cne0$$
$$implies B=npi+(-1)^n(A-B)text where ntext is any integer $$
If $n$ is even, $n=2m$(say) $implies B=2mpi+A-Biff A=2B-2mpi=2B$ as $0<A,B<pi$
If $n$ is odd, $n=2m+1$(say) $implies B=(2m+1)pi-(A-B)iff A=(2m+1)pi$ which is impossible as $0<A<pi$
Conversely, if $A=2B$
$displaystyleimplies a^2-b^2=4R^2(sin^2A-sin^2B)=4R^2sin Csin(A-B)$ (using $(1)$)
$displaystyle=4R^2sin Csin(2B-B)=2Rsin Bcdot 2Rsin C=cdots$
$$a^2-b^2=bcimplies sin^2A-sin^2B=sin Bsin Ctext as Rne0$$
Now, $displaystylesin^2A-sin^2B=sin(A+B)sin(A-B)=sin(pi-C)sin(A-B)=sin Csin(A-B) (1)$
$$implies sin Bsin C=sin Csin(A-B)$$
$$implies sin B=sin(A-B)text as sin Cne0$$
$$implies B=npi+(-1)^n(A-B)text where ntext is any integer $$
If $n$ is even, $n=2m$(say) $implies B=2mpi+A-Biff A=2B-2mpi=2B$ as $0<A,B<pi$
If $n$ is odd, $n=2m+1$(say) $implies B=(2m+1)pi-(A-B)iff A=(2m+1)pi$ which is impossible as $0<A<pi$
Conversely, if $A=2B$
$displaystyleimplies a^2-b^2=4R^2(sin^2A-sin^2B)=4R^2sin Csin(A-B)$ (using $(1)$)
$displaystyle=4R^2sin Csin(2B-B)=2Rsin Bcdot 2Rsin C=cdots$
edited Nov 9 '13 at 7:14
answered Nov 9 '13 at 7:09
lab bhattacharjee
215k14152264
215k14152264
add a comment |Â
add a comment |Â
up vote
8
down vote
1) $angle A=2angle B$
angle bisector of $angle A$ cut $BC$ at $D$ $Longrightarrow$ $dfracCDDB=dfracbc$
thus, $CD=dfracbb+ca$
also, $triangle CADsimtriangle CAB$ $Longrightarrow$ $CA^2=CDcdot CB$
hence, $b^2=dfracbb+cacdot a$ $Longrightarrow$ $a^2=b(b+c)$
2) $a^2=b(b+c)$
angle bisector of $angle A$ cut $BC$ at $D$ $Longrightarrow$ $dfracCDDB=dfracbc$ $Longrightarrow$ $CD=dfracbb+ca$
$a^2=b(b+c)$ $Longrightarrow$ $dfracab=dfracb+ca=dfracbdfracbb+ca$ $Longrightarrow$ $dfracBCCA=dfracCACD$ and $angle DCA=angle ACB$
thus, $triangle ACDsimtriangle ACB$ $Longrightarrow$ $angle CAD=angle CBA$ $Longrightarrow$ $angle A=2angle B$
Very elegant solution. How did you produce the drawing?
– Gerard
Nov 9 '13 at 9:12
This answer can be streamlined a bit. Regardless of the bisector status of $overlineAD$ (but still assuming $overlineAD$ in $angle BAC$'s interior), we have $angle BAC cong angle ADC$, so that $triangle BAC sim angle ADC$ and $$fracb = fracba$$ Then $$beginalign overlineAD text bisects angle A quad &Leftrightarrow qquad fracb = fraca-c \[4pt] &Leftrightarrow qquad fracb^2/ab = fraca-b^2/ac \[4pt] &Leftrightarrow qquad a^2 = bleft( b + c right ) endalign$$
– Blue
Nov 10 '13 at 2:18
add a comment |Â
up vote
8
down vote
1) $angle A=2angle B$
angle bisector of $angle A$ cut $BC$ at $D$ $Longrightarrow$ $dfracCDDB=dfracbc$
thus, $CD=dfracbb+ca$
also, $triangle CADsimtriangle CAB$ $Longrightarrow$ $CA^2=CDcdot CB$
hence, $b^2=dfracbb+cacdot a$ $Longrightarrow$ $a^2=b(b+c)$
2) $a^2=b(b+c)$
angle bisector of $angle A$ cut $BC$ at $D$ $Longrightarrow$ $dfracCDDB=dfracbc$ $Longrightarrow$ $CD=dfracbb+ca$
$a^2=b(b+c)$ $Longrightarrow$ $dfracab=dfracb+ca=dfracbdfracbb+ca$ $Longrightarrow$ $dfracBCCA=dfracCACD$ and $angle DCA=angle ACB$
thus, $triangle ACDsimtriangle ACB$ $Longrightarrow$ $angle CAD=angle CBA$ $Longrightarrow$ $angle A=2angle B$
Very elegant solution. How did you produce the drawing?
– Gerard
Nov 9 '13 at 9:12
This answer can be streamlined a bit. Regardless of the bisector status of $overlineAD$ (but still assuming $overlineAD$ in $angle BAC$'s interior), we have $angle BAC cong angle ADC$, so that $triangle BAC sim angle ADC$ and $$fracb = fracba$$ Then $$beginalign overlineAD text bisects angle A quad &Leftrightarrow qquad fracb = fraca-c \[4pt] &Leftrightarrow qquad fracb^2/ab = fraca-b^2/ac \[4pt] &Leftrightarrow qquad a^2 = bleft( b + c right ) endalign$$
– Blue
Nov 10 '13 at 2:18
add a comment |Â
up vote
8
down vote
up vote
8
down vote
1) $angle A=2angle B$
angle bisector of $angle A$ cut $BC$ at $D$ $Longrightarrow$ $dfracCDDB=dfracbc$
thus, $CD=dfracbb+ca$
also, $triangle CADsimtriangle CAB$ $Longrightarrow$ $CA^2=CDcdot CB$
hence, $b^2=dfracbb+cacdot a$ $Longrightarrow$ $a^2=b(b+c)$
2) $a^2=b(b+c)$
angle bisector of $angle A$ cut $BC$ at $D$ $Longrightarrow$ $dfracCDDB=dfracbc$ $Longrightarrow$ $CD=dfracbb+ca$
$a^2=b(b+c)$ $Longrightarrow$ $dfracab=dfracb+ca=dfracbdfracbb+ca$ $Longrightarrow$ $dfracBCCA=dfracCACD$ and $angle DCA=angle ACB$
thus, $triangle ACDsimtriangle ACB$ $Longrightarrow$ $angle CAD=angle CBA$ $Longrightarrow$ $angle A=2angle B$
1) $angle A=2angle B$
angle bisector of $angle A$ cut $BC$ at $D$ $Longrightarrow$ $dfracCDDB=dfracbc$
thus, $CD=dfracbb+ca$
also, $triangle CADsimtriangle CAB$ $Longrightarrow$ $CA^2=CDcdot CB$
hence, $b^2=dfracbb+cacdot a$ $Longrightarrow$ $a^2=b(b+c)$
2) $a^2=b(b+c)$
angle bisector of $angle A$ cut $BC$ at $D$ $Longrightarrow$ $dfracCDDB=dfracbc$ $Longrightarrow$ $CD=dfracbb+ca$
$a^2=b(b+c)$ $Longrightarrow$ $dfracab=dfracb+ca=dfracbdfracbb+ca$ $Longrightarrow$ $dfracBCCA=dfracCACD$ and $angle DCA=angle ACB$
thus, $triangle ACDsimtriangle ACB$ $Longrightarrow$ $angle CAD=angle CBA$ $Longrightarrow$ $angle A=2angle B$
answered Nov 9 '13 at 8:43
chloe_shi
1,947712
1,947712
Very elegant solution. How did you produce the drawing?
– Gerard
Nov 9 '13 at 9:12
This answer can be streamlined a bit. Regardless of the bisector status of $overlineAD$ (but still assuming $overlineAD$ in $angle BAC$'s interior), we have $angle BAC cong angle ADC$, so that $triangle BAC sim angle ADC$ and $$fracb = fracba$$ Then $$beginalign overlineAD text bisects angle A quad &Leftrightarrow qquad fracb = fraca-c \[4pt] &Leftrightarrow qquad fracb^2/ab = fraca-b^2/ac \[4pt] &Leftrightarrow qquad a^2 = bleft( b + c right ) endalign$$
– Blue
Nov 10 '13 at 2:18
add a comment |Â
Very elegant solution. How did you produce the drawing?
– Gerard
Nov 9 '13 at 9:12
This answer can be streamlined a bit. Regardless of the bisector status of $overlineAD$ (but still assuming $overlineAD$ in $angle BAC$'s interior), we have $angle BAC cong angle ADC$, so that $triangle BAC sim angle ADC$ and $$fracb = fracba$$ Then $$beginalign overlineAD text bisects angle A quad &Leftrightarrow qquad fracb = fraca-c \[4pt] &Leftrightarrow qquad fracb^2/ab = fraca-b^2/ac \[4pt] &Leftrightarrow qquad a^2 = bleft( b + c right ) endalign$$
– Blue
Nov 10 '13 at 2:18
Very elegant solution. How did you produce the drawing?
– Gerard
Nov 9 '13 at 9:12
Very elegant solution. How did you produce the drawing?
– Gerard
Nov 9 '13 at 9:12
This answer can be streamlined a bit. Regardless of the bisector status of $overlineAD$ (but still assuming $overlineAD$ in $angle BAC$'s interior), we have $angle BAC cong angle ADC$, so that $triangle BAC sim angle ADC$ and $$fracb = fracba$$ Then $$beginalign overlineAD text bisects angle A quad &Leftrightarrow qquad fracb = fraca-c \[4pt] &Leftrightarrow qquad fracb^2/ab = fraca-b^2/ac \[4pt] &Leftrightarrow qquad a^2 = bleft( b + c right ) endalign$$
– Blue
Nov 10 '13 at 2:18
This answer can be streamlined a bit. Regardless of the bisector status of $overlineAD$ (but still assuming $overlineAD$ in $angle BAC$'s interior), we have $angle BAC cong angle ADC$, so that $triangle BAC sim angle ADC$ and $$fracb = fracba$$ Then $$beginalign overlineAD text bisects angle A quad &Leftrightarrow qquad fracb = fraca-c \[4pt] &Leftrightarrow qquad fracb^2/ab = fraca-b^2/ac \[4pt] &Leftrightarrow qquad a^2 = bleft( b + c right ) endalign$$
– Blue
Nov 10 '13 at 2:18
add a comment |Â
up vote
2
down vote
Double angle formula says
$$
beginalign
sin(A)
&=2sin(B)cos(B)\
&impliesfracsin(A)sin(B)=2cos(B)tag1
endalign
$$
The formula for the sine of a sum yields
$$
beginalign
sin(C)
&=sin(A+B)\
&=2sin(B)cos(B)cos(B)+(2cos^2(B)-1)sin(B)\
&=sin(B)(4cos^2(B)-1)\
&impliesfracsin(C)sin(B)=4cos^2(B)-1tag2
endalign
$$
Thus, the Law of Sines says
$$
left(frac abright)^2-1=frac cbimplies a^2-b^2=bctag3
$$
add a comment |Â
up vote
2
down vote
Double angle formula says
$$
beginalign
sin(A)
&=2sin(B)cos(B)\
&impliesfracsin(A)sin(B)=2cos(B)tag1
endalign
$$
The formula for the sine of a sum yields
$$
beginalign
sin(C)
&=sin(A+B)\
&=2sin(B)cos(B)cos(B)+(2cos^2(B)-1)sin(B)\
&=sin(B)(4cos^2(B)-1)\
&impliesfracsin(C)sin(B)=4cos^2(B)-1tag2
endalign
$$
Thus, the Law of Sines says
$$
left(frac abright)^2-1=frac cbimplies a^2-b^2=bctag3
$$
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Double angle formula says
$$
beginalign
sin(A)
&=2sin(B)cos(B)\
&impliesfracsin(A)sin(B)=2cos(B)tag1
endalign
$$
The formula for the sine of a sum yields
$$
beginalign
sin(C)
&=sin(A+B)\
&=2sin(B)cos(B)cos(B)+(2cos^2(B)-1)sin(B)\
&=sin(B)(4cos^2(B)-1)\
&impliesfracsin(C)sin(B)=4cos^2(B)-1tag2
endalign
$$
Thus, the Law of Sines says
$$
left(frac abright)^2-1=frac cbimplies a^2-b^2=bctag3
$$
Double angle formula says
$$
beginalign
sin(A)
&=2sin(B)cos(B)\
&impliesfracsin(A)sin(B)=2cos(B)tag1
endalign
$$
The formula for the sine of a sum yields
$$
beginalign
sin(C)
&=sin(A+B)\
&=2sin(B)cos(B)cos(B)+(2cos^2(B)-1)sin(B)\
&=sin(B)(4cos^2(B)-1)\
&impliesfracsin(C)sin(B)=4cos^2(B)-1tag2
endalign
$$
Thus, the Law of Sines says
$$
left(frac abright)^2-1=frac cbimplies a^2-b^2=bctag3
$$
answered Mar 12 '14 at 21:43
robjohn♦
258k26297612
258k26297612
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f557704%2fin-a-triangle-angle-a-2-angle-b-iff-a2-bbc%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password