Inverse of an “anti-Jordan†matrix
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
Call a matrix anti-Jordan if it has $-1$s on the subdiagonal, values on the diagonal, and zeroes elsewhere; that is, it is written
$$beginbmatrix
lambda_1 & 0 & 0 & dots \
-1 & lambda_2 & 0 & dots\
0 & -1 & lambda_3 & dots\
vdots &&& ddots
endbmatrix$$
Is there a general formula for the inverse of such a matrix?
If it helps, I'm trying to compute the spectral radius of an $N times N$ matrix $FV^-1$ where
$$F = beginbmatrixbeta_1 & beta_2 & beta_3 & dots\0 & 0 & 0 &dots\0 &0 & 0 & dots\vdots &&& ddotsendbmatrix$$
$N$ is "very large" and $$V = beginbmatrix
1 + mu_1 & 0 & 0 & dots \
-1 & 1 + mu_2 & 0 & dots\
0 & -1 & 1 + mu_3 & dots\
vdots &&& ddots
endbmatrix.$$
linear-algebra matrices
add a comment |Â
up vote
3
down vote
favorite
Call a matrix anti-Jordan if it has $-1$s on the subdiagonal, values on the diagonal, and zeroes elsewhere; that is, it is written
$$beginbmatrix
lambda_1 & 0 & 0 & dots \
-1 & lambda_2 & 0 & dots\
0 & -1 & lambda_3 & dots\
vdots &&& ddots
endbmatrix$$
Is there a general formula for the inverse of such a matrix?
If it helps, I'm trying to compute the spectral radius of an $N times N$ matrix $FV^-1$ where
$$F = beginbmatrixbeta_1 & beta_2 & beta_3 & dots\0 & 0 & 0 &dots\0 &0 & 0 & dots\vdots &&& ddotsendbmatrix$$
$N$ is "very large" and $$V = beginbmatrix
1 + mu_1 & 0 & 0 & dots \
-1 & 1 + mu_2 & 0 & dots\
0 & -1 & 1 + mu_3 & dots\
vdots &&& ddots
endbmatrix.$$
linear-algebra matrices
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
Call a matrix anti-Jordan if it has $-1$s on the subdiagonal, values on the diagonal, and zeroes elsewhere; that is, it is written
$$beginbmatrix
lambda_1 & 0 & 0 & dots \
-1 & lambda_2 & 0 & dots\
0 & -1 & lambda_3 & dots\
vdots &&& ddots
endbmatrix$$
Is there a general formula for the inverse of such a matrix?
If it helps, I'm trying to compute the spectral radius of an $N times N$ matrix $FV^-1$ where
$$F = beginbmatrixbeta_1 & beta_2 & beta_3 & dots\0 & 0 & 0 &dots\0 &0 & 0 & dots\vdots &&& ddotsendbmatrix$$
$N$ is "very large" and $$V = beginbmatrix
1 + mu_1 & 0 & 0 & dots \
-1 & 1 + mu_2 & 0 & dots\
0 & -1 & 1 + mu_3 & dots\
vdots &&& ddots
endbmatrix.$$
linear-algebra matrices
Call a matrix anti-Jordan if it has $-1$s on the subdiagonal, values on the diagonal, and zeroes elsewhere; that is, it is written
$$beginbmatrix
lambda_1 & 0 & 0 & dots \
-1 & lambda_2 & 0 & dots\
0 & -1 & lambda_3 & dots\
vdots &&& ddots
endbmatrix$$
Is there a general formula for the inverse of such a matrix?
If it helps, I'm trying to compute the spectral radius of an $N times N$ matrix $FV^-1$ where
$$F = beginbmatrixbeta_1 & beta_2 & beta_3 & dots\0 & 0 & 0 &dots\0 &0 & 0 & dots\vdots &&& ddotsendbmatrix$$
$N$ is "very large" and $$V = beginbmatrix
1 + mu_1 & 0 & 0 & dots \
-1 & 1 + mu_2 & 0 & dots\
0 & -1 & 1 + mu_3 & dots\
vdots &&& ddots
endbmatrix.$$
linear-algebra matrices
asked Jul 18 at 21:52


Aidan Backus
6716
6716
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
6
down vote
accepted
The inverse is the matrix $B = A^-1$ with $b_ij=0$ for $i < j$ and $b_ij = lambda_j^-1dotslambda_i^-1$ for $ige j$.
Your spectral radius will be the absolute value of
$$
sum_i=1^Nfracbeta_i(1+mu_1)dots(1+mu_i).
$$
add a comment |Â
up vote
3
down vote
$$beginbmatrix
lambda_1 & 0 & 0 & dots \
-1 & lambda_2 & 0 & dots\
0 & -1 & lambda_3 & dots\
vdots &vdots &vdots & ddots
endbmatrix^-1=beginbmatrix
lambda_1^-1 & 0 & 0 & dots\
lambda_1^-1lambda_2^-1 & lambda_2^-1 & 0 & dots \
lambda_1^-1lambda_2^-1lambda^-1_3 & lambda_2^-1lambda_3^-1 & lambda_3^-1 & dots\
vdots & vdots & vdots & ddots
endbmatrix$$
I found this by applying row operations the augmented matrix $[A|I]$, where $A$ is your anti-Jordon matrix and $I$ is the $ntimes n$ identity, until it was in the form $[I|B]$.
Edit: My answer was originally wrong, and has been fixed to match amsmath's correct answer.
2
This is not correct. When I multiply your $A^-1$ to $A$, in the entry $(3,1)$ I get $-lambda_2^-1lambda_3^-1$ insetad of $0$.
– amsmath
Jul 18 at 22:14
@amsmath Yep, I was too hasty.
– Mike Earnest
Jul 18 at 22:20
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
6
down vote
accepted
The inverse is the matrix $B = A^-1$ with $b_ij=0$ for $i < j$ and $b_ij = lambda_j^-1dotslambda_i^-1$ for $ige j$.
Your spectral radius will be the absolute value of
$$
sum_i=1^Nfracbeta_i(1+mu_1)dots(1+mu_i).
$$
add a comment |Â
up vote
6
down vote
accepted
The inverse is the matrix $B = A^-1$ with $b_ij=0$ for $i < j$ and $b_ij = lambda_j^-1dotslambda_i^-1$ for $ige j$.
Your spectral radius will be the absolute value of
$$
sum_i=1^Nfracbeta_i(1+mu_1)dots(1+mu_i).
$$
add a comment |Â
up vote
6
down vote
accepted
up vote
6
down vote
accepted
The inverse is the matrix $B = A^-1$ with $b_ij=0$ for $i < j$ and $b_ij = lambda_j^-1dotslambda_i^-1$ for $ige j$.
Your spectral radius will be the absolute value of
$$
sum_i=1^Nfracbeta_i(1+mu_1)dots(1+mu_i).
$$
The inverse is the matrix $B = A^-1$ with $b_ij=0$ for $i < j$ and $b_ij = lambda_j^-1dotslambda_i^-1$ for $ige j$.
Your spectral radius will be the absolute value of
$$
sum_i=1^Nfracbeta_i(1+mu_1)dots(1+mu_i).
$$
edited Jul 18 at 22:27
answered Jul 18 at 22:12
amsmath
1,613114
1,613114
add a comment |Â
add a comment |Â
up vote
3
down vote
$$beginbmatrix
lambda_1 & 0 & 0 & dots \
-1 & lambda_2 & 0 & dots\
0 & -1 & lambda_3 & dots\
vdots &vdots &vdots & ddots
endbmatrix^-1=beginbmatrix
lambda_1^-1 & 0 & 0 & dots\
lambda_1^-1lambda_2^-1 & lambda_2^-1 & 0 & dots \
lambda_1^-1lambda_2^-1lambda^-1_3 & lambda_2^-1lambda_3^-1 & lambda_3^-1 & dots\
vdots & vdots & vdots & ddots
endbmatrix$$
I found this by applying row operations the augmented matrix $[A|I]$, where $A$ is your anti-Jordon matrix and $I$ is the $ntimes n$ identity, until it was in the form $[I|B]$.
Edit: My answer was originally wrong, and has been fixed to match amsmath's correct answer.
2
This is not correct. When I multiply your $A^-1$ to $A$, in the entry $(3,1)$ I get $-lambda_2^-1lambda_3^-1$ insetad of $0$.
– amsmath
Jul 18 at 22:14
@amsmath Yep, I was too hasty.
– Mike Earnest
Jul 18 at 22:20
add a comment |Â
up vote
3
down vote
$$beginbmatrix
lambda_1 & 0 & 0 & dots \
-1 & lambda_2 & 0 & dots\
0 & -1 & lambda_3 & dots\
vdots &vdots &vdots & ddots
endbmatrix^-1=beginbmatrix
lambda_1^-1 & 0 & 0 & dots\
lambda_1^-1lambda_2^-1 & lambda_2^-1 & 0 & dots \
lambda_1^-1lambda_2^-1lambda^-1_3 & lambda_2^-1lambda_3^-1 & lambda_3^-1 & dots\
vdots & vdots & vdots & ddots
endbmatrix$$
I found this by applying row operations the augmented matrix $[A|I]$, where $A$ is your anti-Jordon matrix and $I$ is the $ntimes n$ identity, until it was in the form $[I|B]$.
Edit: My answer was originally wrong, and has been fixed to match amsmath's correct answer.
2
This is not correct. When I multiply your $A^-1$ to $A$, in the entry $(3,1)$ I get $-lambda_2^-1lambda_3^-1$ insetad of $0$.
– amsmath
Jul 18 at 22:14
@amsmath Yep, I was too hasty.
– Mike Earnest
Jul 18 at 22:20
add a comment |Â
up vote
3
down vote
up vote
3
down vote
$$beginbmatrix
lambda_1 & 0 & 0 & dots \
-1 & lambda_2 & 0 & dots\
0 & -1 & lambda_3 & dots\
vdots &vdots &vdots & ddots
endbmatrix^-1=beginbmatrix
lambda_1^-1 & 0 & 0 & dots\
lambda_1^-1lambda_2^-1 & lambda_2^-1 & 0 & dots \
lambda_1^-1lambda_2^-1lambda^-1_3 & lambda_2^-1lambda_3^-1 & lambda_3^-1 & dots\
vdots & vdots & vdots & ddots
endbmatrix$$
I found this by applying row operations the augmented matrix $[A|I]$, where $A$ is your anti-Jordon matrix and $I$ is the $ntimes n$ identity, until it was in the form $[I|B]$.
Edit: My answer was originally wrong, and has been fixed to match amsmath's correct answer.
$$beginbmatrix
lambda_1 & 0 & 0 & dots \
-1 & lambda_2 & 0 & dots\
0 & -1 & lambda_3 & dots\
vdots &vdots &vdots & ddots
endbmatrix^-1=beginbmatrix
lambda_1^-1 & 0 & 0 & dots\
lambda_1^-1lambda_2^-1 & lambda_2^-1 & 0 & dots \
lambda_1^-1lambda_2^-1lambda^-1_3 & lambda_2^-1lambda_3^-1 & lambda_3^-1 & dots\
vdots & vdots & vdots & ddots
endbmatrix$$
I found this by applying row operations the augmented matrix $[A|I]$, where $A$ is your anti-Jordon matrix and $I$ is the $ntimes n$ identity, until it was in the form $[I|B]$.
Edit: My answer was originally wrong, and has been fixed to match amsmath's correct answer.
edited Jul 18 at 22:20
community wiki
2 revs
Mike Earnest
2
This is not correct. When I multiply your $A^-1$ to $A$, in the entry $(3,1)$ I get $-lambda_2^-1lambda_3^-1$ insetad of $0$.
– amsmath
Jul 18 at 22:14
@amsmath Yep, I was too hasty.
– Mike Earnest
Jul 18 at 22:20
add a comment |Â
2
This is not correct. When I multiply your $A^-1$ to $A$, in the entry $(3,1)$ I get $-lambda_2^-1lambda_3^-1$ insetad of $0$.
– amsmath
Jul 18 at 22:14
@amsmath Yep, I was too hasty.
– Mike Earnest
Jul 18 at 22:20
2
2
This is not correct. When I multiply your $A^-1$ to $A$, in the entry $(3,1)$ I get $-lambda_2^-1lambda_3^-1$ insetad of $0$.
– amsmath
Jul 18 at 22:14
This is not correct. When I multiply your $A^-1$ to $A$, in the entry $(3,1)$ I get $-lambda_2^-1lambda_3^-1$ insetad of $0$.
– amsmath
Jul 18 at 22:14
@amsmath Yep, I was too hasty.
– Mike Earnest
Jul 18 at 22:20
@amsmath Yep, I was too hasty.
– Mike Earnest
Jul 18 at 22:20
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2856044%2finverse-of-an-anti-jordan-matrix%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password