Is there a scalar product s.t. the following list is orthogonal?
Clash Royale CLAN TAG#URR8PPP
up vote
7
down vote
favorite
Let $A_1=beginpmatrix1&0\0&0endpmatrixquad A_2=beginpmatrix1&1\0&0endpmatrix,quad A_3=beginpmatrix1&1\1&0endpmatrix,quad A_4=beginpmatrix1&1\1&1endpmatrix$.
Is there a scalar product s.t. $|A_k|=k$ for $k=1,2,3,4$ and $A_iperp A_j$ for $ineq j$ ?
With $langle A, B rangle = mboxTr(A^top B)$ we have that $|A_i|=i$, but unfortunately it's not orthogonal. So, how can we conclude?
linear-algebra
add a comment |Â
up vote
7
down vote
favorite
Let $A_1=beginpmatrix1&0\0&0endpmatrixquad A_2=beginpmatrix1&1\0&0endpmatrix,quad A_3=beginpmatrix1&1\1&0endpmatrix,quad A_4=beginpmatrix1&1\1&1endpmatrix$.
Is there a scalar product s.t. $|A_k|=k$ for $k=1,2,3,4$ and $A_iperp A_j$ for $ineq j$ ?
With $langle A, B rangle = mboxTr(A^top B)$ we have that $|A_i|=i$, but unfortunately it's not orthogonal. So, how can we conclude?
linear-algebra
add a comment |Â
up vote
7
down vote
favorite
up vote
7
down vote
favorite
Let $A_1=beginpmatrix1&0\0&0endpmatrixquad A_2=beginpmatrix1&1\0&0endpmatrix,quad A_3=beginpmatrix1&1\1&0endpmatrix,quad A_4=beginpmatrix1&1\1&1endpmatrix$.
Is there a scalar product s.t. $|A_k|=k$ for $k=1,2,3,4$ and $A_iperp A_j$ for $ineq j$ ?
With $langle A, B rangle = mboxTr(A^top B)$ we have that $|A_i|=i$, but unfortunately it's not orthogonal. So, how can we conclude?
linear-algebra
Let $A_1=beginpmatrix1&0\0&0endpmatrixquad A_2=beginpmatrix1&1\0&0endpmatrix,quad A_3=beginpmatrix1&1\1&0endpmatrix,quad A_4=beginpmatrix1&1\1&1endpmatrix$.
Is there a scalar product s.t. $|A_k|=k$ for $k=1,2,3,4$ and $A_iperp A_j$ for $ineq j$ ?
With $langle A, B rangle = mboxTr(A^top B)$ we have that $|A_i|=i$, but unfortunately it's not orthogonal. So, how can we conclude?
linear-algebra
edited Jul 29 at 11:11
Rodrigo de Azevedo
12.6k41751
12.6k41751
asked Jul 29 at 10:44
MSE
1,471315
1,471315
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
23
down vote
accepted
Lemma. Let $V$ be a real vector space and $v_1,...,v_n$ a basis. Then there exists an inner product on $V$ that makes $(v_i)_i$ an orthonormal basis.
Proof. Define $langle v_j,v_krangle = delta_jk$ and extend it linearly.
For your Problem: Check that the $A_j$ form a basis of $mathbbR^2times 2$. Then also $(A_j/j)_j$ is a basis and the inner product from the lemma does the job.
add a comment |Â
up vote
4
down vote
Let $E_1:=beginbmatrix1&0\0&0endbmatrix$, $E_1:=beginbmatrix0&1\0&0endbmatrix$, $E_3:=beginbmatrix0&0\1&0endbmatrix$, and $E_4:=beginbmatrix0&0\0&1endbmatrix$. Then, the matrix of transformation sending $(E_1,E_2,E_3,E_4)$ to $(A_1,A_2,A_3,A_4)$ is
$$T:=beginbmatrix1&1&1&1\0&1&1&1\0&0&1&1\0&0&0&1endbmatrix,.$$
The required bilinear form in the basis $(A_1,A_2,A_3,A_4)$ is given by the matrix
$$B:=beginbmatrix1&0&0&0\0&4&0&0\0&0&9&0\0&0&0&16endbmatrix,.$$
Therefore, in the basis $(E_1,E_2,E_3,E_4)$, the bilinear form is given by the matrix
$$left(T^-1right)^top,B,T^-1=beginbmatrix1&-1&0&0\-1&5&-4&0\0&-4&13&-9\0&0&-9&25endbmatrix,.$$
In other words, this bilinear form is given by
$$leftlangle beginbmatrixa&b\c&dendbmatrix,beginbmatrixx&y\z&wendbmatrixrightrangle=ax-ay-bx+5by-4bz-4cy+13cz-9cw-9dz+25dw$$
for $a,b,c,d,x,y,z,winmathbbR$.
If the base field is $mathbbC$, then the bilinear form (or rather, the sesquilinear form) is given by
$$leftlangle beginbmatrixa&b\c&dendbmatrix,beginbmatrixx&y\z&wendbmatrixrightrangle=abar x-abar y-bbar x+5bbar y-4bbar z-4cbar y+13cbar z-9cbar w-9dbar z+25dbar w$$
for $a,b,c,d,x,y,z,winmathbbC$.
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
23
down vote
accepted
Lemma. Let $V$ be a real vector space and $v_1,...,v_n$ a basis. Then there exists an inner product on $V$ that makes $(v_i)_i$ an orthonormal basis.
Proof. Define $langle v_j,v_krangle = delta_jk$ and extend it linearly.
For your Problem: Check that the $A_j$ form a basis of $mathbbR^2times 2$. Then also $(A_j/j)_j$ is a basis and the inner product from the lemma does the job.
add a comment |Â
up vote
23
down vote
accepted
Lemma. Let $V$ be a real vector space and $v_1,...,v_n$ a basis. Then there exists an inner product on $V$ that makes $(v_i)_i$ an orthonormal basis.
Proof. Define $langle v_j,v_krangle = delta_jk$ and extend it linearly.
For your Problem: Check that the $A_j$ form a basis of $mathbbR^2times 2$. Then also $(A_j/j)_j$ is a basis and the inner product from the lemma does the job.
add a comment |Â
up vote
23
down vote
accepted
up vote
23
down vote
accepted
Lemma. Let $V$ be a real vector space and $v_1,...,v_n$ a basis. Then there exists an inner product on $V$ that makes $(v_i)_i$ an orthonormal basis.
Proof. Define $langle v_j,v_krangle = delta_jk$ and extend it linearly.
For your Problem: Check that the $A_j$ form a basis of $mathbbR^2times 2$. Then also $(A_j/j)_j$ is a basis and the inner product from the lemma does the job.
Lemma. Let $V$ be a real vector space and $v_1,...,v_n$ a basis. Then there exists an inner product on $V$ that makes $(v_i)_i$ an orthonormal basis.
Proof. Define $langle v_j,v_krangle = delta_jk$ and extend it linearly.
For your Problem: Check that the $A_j$ form a basis of $mathbbR^2times 2$. Then also $(A_j/j)_j$ is a basis and the inner product from the lemma does the job.
answered Jul 29 at 11:09
Jan Bohr
3,1241419
3,1241419
add a comment |Â
add a comment |Â
up vote
4
down vote
Let $E_1:=beginbmatrix1&0\0&0endbmatrix$, $E_1:=beginbmatrix0&1\0&0endbmatrix$, $E_3:=beginbmatrix0&0\1&0endbmatrix$, and $E_4:=beginbmatrix0&0\0&1endbmatrix$. Then, the matrix of transformation sending $(E_1,E_2,E_3,E_4)$ to $(A_1,A_2,A_3,A_4)$ is
$$T:=beginbmatrix1&1&1&1\0&1&1&1\0&0&1&1\0&0&0&1endbmatrix,.$$
The required bilinear form in the basis $(A_1,A_2,A_3,A_4)$ is given by the matrix
$$B:=beginbmatrix1&0&0&0\0&4&0&0\0&0&9&0\0&0&0&16endbmatrix,.$$
Therefore, in the basis $(E_1,E_2,E_3,E_4)$, the bilinear form is given by the matrix
$$left(T^-1right)^top,B,T^-1=beginbmatrix1&-1&0&0\-1&5&-4&0\0&-4&13&-9\0&0&-9&25endbmatrix,.$$
In other words, this bilinear form is given by
$$leftlangle beginbmatrixa&b\c&dendbmatrix,beginbmatrixx&y\z&wendbmatrixrightrangle=ax-ay-bx+5by-4bz-4cy+13cz-9cw-9dz+25dw$$
for $a,b,c,d,x,y,z,winmathbbR$.
If the base field is $mathbbC$, then the bilinear form (or rather, the sesquilinear form) is given by
$$leftlangle beginbmatrixa&b\c&dendbmatrix,beginbmatrixx&y\z&wendbmatrixrightrangle=abar x-abar y-bbar x+5bbar y-4bbar z-4cbar y+13cbar z-9cbar w-9dbar z+25dbar w$$
for $a,b,c,d,x,y,z,winmathbbC$.
add a comment |Â
up vote
4
down vote
Let $E_1:=beginbmatrix1&0\0&0endbmatrix$, $E_1:=beginbmatrix0&1\0&0endbmatrix$, $E_3:=beginbmatrix0&0\1&0endbmatrix$, and $E_4:=beginbmatrix0&0\0&1endbmatrix$. Then, the matrix of transformation sending $(E_1,E_2,E_3,E_4)$ to $(A_1,A_2,A_3,A_4)$ is
$$T:=beginbmatrix1&1&1&1\0&1&1&1\0&0&1&1\0&0&0&1endbmatrix,.$$
The required bilinear form in the basis $(A_1,A_2,A_3,A_4)$ is given by the matrix
$$B:=beginbmatrix1&0&0&0\0&4&0&0\0&0&9&0\0&0&0&16endbmatrix,.$$
Therefore, in the basis $(E_1,E_2,E_3,E_4)$, the bilinear form is given by the matrix
$$left(T^-1right)^top,B,T^-1=beginbmatrix1&-1&0&0\-1&5&-4&0\0&-4&13&-9\0&0&-9&25endbmatrix,.$$
In other words, this bilinear form is given by
$$leftlangle beginbmatrixa&b\c&dendbmatrix,beginbmatrixx&y\z&wendbmatrixrightrangle=ax-ay-bx+5by-4bz-4cy+13cz-9cw-9dz+25dw$$
for $a,b,c,d,x,y,z,winmathbbR$.
If the base field is $mathbbC$, then the bilinear form (or rather, the sesquilinear form) is given by
$$leftlangle beginbmatrixa&b\c&dendbmatrix,beginbmatrixx&y\z&wendbmatrixrightrangle=abar x-abar y-bbar x+5bbar y-4bbar z-4cbar y+13cbar z-9cbar w-9dbar z+25dbar w$$
for $a,b,c,d,x,y,z,winmathbbC$.
add a comment |Â
up vote
4
down vote
up vote
4
down vote
Let $E_1:=beginbmatrix1&0\0&0endbmatrix$, $E_1:=beginbmatrix0&1\0&0endbmatrix$, $E_3:=beginbmatrix0&0\1&0endbmatrix$, and $E_4:=beginbmatrix0&0\0&1endbmatrix$. Then, the matrix of transformation sending $(E_1,E_2,E_3,E_4)$ to $(A_1,A_2,A_3,A_4)$ is
$$T:=beginbmatrix1&1&1&1\0&1&1&1\0&0&1&1\0&0&0&1endbmatrix,.$$
The required bilinear form in the basis $(A_1,A_2,A_3,A_4)$ is given by the matrix
$$B:=beginbmatrix1&0&0&0\0&4&0&0\0&0&9&0\0&0&0&16endbmatrix,.$$
Therefore, in the basis $(E_1,E_2,E_3,E_4)$, the bilinear form is given by the matrix
$$left(T^-1right)^top,B,T^-1=beginbmatrix1&-1&0&0\-1&5&-4&0\0&-4&13&-9\0&0&-9&25endbmatrix,.$$
In other words, this bilinear form is given by
$$leftlangle beginbmatrixa&b\c&dendbmatrix,beginbmatrixx&y\z&wendbmatrixrightrangle=ax-ay-bx+5by-4bz-4cy+13cz-9cw-9dz+25dw$$
for $a,b,c,d,x,y,z,winmathbbR$.
If the base field is $mathbbC$, then the bilinear form (or rather, the sesquilinear form) is given by
$$leftlangle beginbmatrixa&b\c&dendbmatrix,beginbmatrixx&y\z&wendbmatrixrightrangle=abar x-abar y-bbar x+5bbar y-4bbar z-4cbar y+13cbar z-9cbar w-9dbar z+25dbar w$$
for $a,b,c,d,x,y,z,winmathbbC$.
Let $E_1:=beginbmatrix1&0\0&0endbmatrix$, $E_1:=beginbmatrix0&1\0&0endbmatrix$, $E_3:=beginbmatrix0&0\1&0endbmatrix$, and $E_4:=beginbmatrix0&0\0&1endbmatrix$. Then, the matrix of transformation sending $(E_1,E_2,E_3,E_4)$ to $(A_1,A_2,A_3,A_4)$ is
$$T:=beginbmatrix1&1&1&1\0&1&1&1\0&0&1&1\0&0&0&1endbmatrix,.$$
The required bilinear form in the basis $(A_1,A_2,A_3,A_4)$ is given by the matrix
$$B:=beginbmatrix1&0&0&0\0&4&0&0\0&0&9&0\0&0&0&16endbmatrix,.$$
Therefore, in the basis $(E_1,E_2,E_3,E_4)$, the bilinear form is given by the matrix
$$left(T^-1right)^top,B,T^-1=beginbmatrix1&-1&0&0\-1&5&-4&0\0&-4&13&-9\0&0&-9&25endbmatrix,.$$
In other words, this bilinear form is given by
$$leftlangle beginbmatrixa&b\c&dendbmatrix,beginbmatrixx&y\z&wendbmatrixrightrangle=ax-ay-bx+5by-4bz-4cy+13cz-9cw-9dz+25dw$$
for $a,b,c,d,x,y,z,winmathbbR$.
If the base field is $mathbbC$, then the bilinear form (or rather, the sesquilinear form) is given by
$$leftlangle beginbmatrixa&b\c&dendbmatrix,beginbmatrixx&y\z&wendbmatrixrightrangle=abar x-abar y-bbar x+5bbar y-4bbar z-4cbar y+13cbar z-9cbar w-9dbar z+25dbar w$$
for $a,b,c,d,x,y,z,winmathbbC$.
edited Jul 29 at 11:21
answered Jul 29 at 11:12


Batominovski
22.9k22777
22.9k22777
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2865979%2fis-there-a-scalar-product-s-t-the-following-list-is-orthogonal%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password