Is there a scalar product s.t. the following list is orthogonal?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
7
down vote

favorite
3












Let $A_1=beginpmatrix1&0\0&0endpmatrixquad A_2=beginpmatrix1&1\0&0endpmatrix,quad A_3=beginpmatrix1&1\1&0endpmatrix,quad A_4=beginpmatrix1&1\1&1endpmatrix$.



Is there a scalar product s.t. $|A_k|=k$ for $k=1,2,3,4$ and $A_iperp A_j$ for $ineq j$ ?




With $langle A, B rangle = mboxTr(A^top B)$ we have that $|A_i|=i$, but unfortunately it's not orthogonal. So, how can we conclude?







share|cite|improve this question

























    up vote
    7
    down vote

    favorite
    3












    Let $A_1=beginpmatrix1&0\0&0endpmatrixquad A_2=beginpmatrix1&1\0&0endpmatrix,quad A_3=beginpmatrix1&1\1&0endpmatrix,quad A_4=beginpmatrix1&1\1&1endpmatrix$.



    Is there a scalar product s.t. $|A_k|=k$ for $k=1,2,3,4$ and $A_iperp A_j$ for $ineq j$ ?




    With $langle A, B rangle = mboxTr(A^top B)$ we have that $|A_i|=i$, but unfortunately it's not orthogonal. So, how can we conclude?







    share|cite|improve this question























      up vote
      7
      down vote

      favorite
      3









      up vote
      7
      down vote

      favorite
      3






      3





      Let $A_1=beginpmatrix1&0\0&0endpmatrixquad A_2=beginpmatrix1&1\0&0endpmatrix,quad A_3=beginpmatrix1&1\1&0endpmatrix,quad A_4=beginpmatrix1&1\1&1endpmatrix$.



      Is there a scalar product s.t. $|A_k|=k$ for $k=1,2,3,4$ and $A_iperp A_j$ for $ineq j$ ?




      With $langle A, B rangle = mboxTr(A^top B)$ we have that $|A_i|=i$, but unfortunately it's not orthogonal. So, how can we conclude?







      share|cite|improve this question













      Let $A_1=beginpmatrix1&0\0&0endpmatrixquad A_2=beginpmatrix1&1\0&0endpmatrix,quad A_3=beginpmatrix1&1\1&0endpmatrix,quad A_4=beginpmatrix1&1\1&1endpmatrix$.



      Is there a scalar product s.t. $|A_k|=k$ for $k=1,2,3,4$ and $A_iperp A_j$ for $ineq j$ ?




      With $langle A, B rangle = mboxTr(A^top B)$ we have that $|A_i|=i$, but unfortunately it's not orthogonal. So, how can we conclude?









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Jul 29 at 11:11









      Rodrigo de Azevedo

      12.6k41751




      12.6k41751









      asked Jul 29 at 10:44









      MSE

      1,471315




      1,471315




















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          23
          down vote



          accepted










          Lemma. Let $V$ be a real vector space and $v_1,...,v_n$ a basis. Then there exists an inner product on $V$ that makes $(v_i)_i$ an orthonormal basis.



          Proof. Define $langle v_j,v_krangle = delta_jk$ and extend it linearly.




          For your Problem: Check that the $A_j$ form a basis of $mathbbR^2times 2$. Then also $(A_j/j)_j$ is a basis and the inner product from the lemma does the job.






          share|cite|improve this answer




























            up vote
            4
            down vote













            Let $E_1:=beginbmatrix1&0\0&0endbmatrix$, $E_1:=beginbmatrix0&1\0&0endbmatrix$, $E_3:=beginbmatrix0&0\1&0endbmatrix$, and $E_4:=beginbmatrix0&0\0&1endbmatrix$. Then, the matrix of transformation sending $(E_1,E_2,E_3,E_4)$ to $(A_1,A_2,A_3,A_4)$ is
            $$T:=beginbmatrix1&1&1&1\0&1&1&1\0&0&1&1\0&0&0&1endbmatrix,.$$
            The required bilinear form in the basis $(A_1,A_2,A_3,A_4)$ is given by the matrix
            $$B:=beginbmatrix1&0&0&0\0&4&0&0\0&0&9&0\0&0&0&16endbmatrix,.$$
            Therefore, in the basis $(E_1,E_2,E_3,E_4)$, the bilinear form is given by the matrix
            $$left(T^-1right)^top,B,T^-1=beginbmatrix1&-1&0&0\-1&5&-4&0\0&-4&13&-9\0&0&-9&25endbmatrix,.$$
            In other words, this bilinear form is given by
            $$leftlangle beginbmatrixa&b\c&dendbmatrix,beginbmatrixx&y\z&wendbmatrixrightrangle=ax-ay-bx+5by-4bz-4cy+13cz-9cw-9dz+25dw$$
            for $a,b,c,d,x,y,z,winmathbbR$.
            If the base field is $mathbbC$, then the bilinear form (or rather, the sesquilinear form) is given by
            $$leftlangle beginbmatrixa&b\c&dendbmatrix,beginbmatrixx&y\z&wendbmatrixrightrangle=abar x-abar y-bbar x+5bbar y-4bbar z-4cbar y+13cbar z-9cbar w-9dbar z+25dbar w$$
            for $a,b,c,d,x,y,z,winmathbbC$.






            share|cite|improve this answer























              Your Answer




              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: false,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );








               

              draft saved


              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2865979%2fis-there-a-scalar-product-s-t-the-following-list-is-orthogonal%23new-answer', 'question_page');

              );

              Post as a guest






























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              23
              down vote



              accepted










              Lemma. Let $V$ be a real vector space and $v_1,...,v_n$ a basis. Then there exists an inner product on $V$ that makes $(v_i)_i$ an orthonormal basis.



              Proof. Define $langle v_j,v_krangle = delta_jk$ and extend it linearly.




              For your Problem: Check that the $A_j$ form a basis of $mathbbR^2times 2$. Then also $(A_j/j)_j$ is a basis and the inner product from the lemma does the job.






              share|cite|improve this answer

























                up vote
                23
                down vote



                accepted










                Lemma. Let $V$ be a real vector space and $v_1,...,v_n$ a basis. Then there exists an inner product on $V$ that makes $(v_i)_i$ an orthonormal basis.



                Proof. Define $langle v_j,v_krangle = delta_jk$ and extend it linearly.




                For your Problem: Check that the $A_j$ form a basis of $mathbbR^2times 2$. Then also $(A_j/j)_j$ is a basis and the inner product from the lemma does the job.






                share|cite|improve this answer























                  up vote
                  23
                  down vote



                  accepted







                  up vote
                  23
                  down vote



                  accepted






                  Lemma. Let $V$ be a real vector space and $v_1,...,v_n$ a basis. Then there exists an inner product on $V$ that makes $(v_i)_i$ an orthonormal basis.



                  Proof. Define $langle v_j,v_krangle = delta_jk$ and extend it linearly.




                  For your Problem: Check that the $A_j$ form a basis of $mathbbR^2times 2$. Then also $(A_j/j)_j$ is a basis and the inner product from the lemma does the job.






                  share|cite|improve this answer













                  Lemma. Let $V$ be a real vector space and $v_1,...,v_n$ a basis. Then there exists an inner product on $V$ that makes $(v_i)_i$ an orthonormal basis.



                  Proof. Define $langle v_j,v_krangle = delta_jk$ and extend it linearly.




                  For your Problem: Check that the $A_j$ form a basis of $mathbbR^2times 2$. Then also $(A_j/j)_j$ is a basis and the inner product from the lemma does the job.







                  share|cite|improve this answer













                  share|cite|improve this answer



                  share|cite|improve this answer











                  answered Jul 29 at 11:09









                  Jan Bohr

                  3,1241419




                  3,1241419




















                      up vote
                      4
                      down vote













                      Let $E_1:=beginbmatrix1&0\0&0endbmatrix$, $E_1:=beginbmatrix0&1\0&0endbmatrix$, $E_3:=beginbmatrix0&0\1&0endbmatrix$, and $E_4:=beginbmatrix0&0\0&1endbmatrix$. Then, the matrix of transformation sending $(E_1,E_2,E_3,E_4)$ to $(A_1,A_2,A_3,A_4)$ is
                      $$T:=beginbmatrix1&1&1&1\0&1&1&1\0&0&1&1\0&0&0&1endbmatrix,.$$
                      The required bilinear form in the basis $(A_1,A_2,A_3,A_4)$ is given by the matrix
                      $$B:=beginbmatrix1&0&0&0\0&4&0&0\0&0&9&0\0&0&0&16endbmatrix,.$$
                      Therefore, in the basis $(E_1,E_2,E_3,E_4)$, the bilinear form is given by the matrix
                      $$left(T^-1right)^top,B,T^-1=beginbmatrix1&-1&0&0\-1&5&-4&0\0&-4&13&-9\0&0&-9&25endbmatrix,.$$
                      In other words, this bilinear form is given by
                      $$leftlangle beginbmatrixa&b\c&dendbmatrix,beginbmatrixx&y\z&wendbmatrixrightrangle=ax-ay-bx+5by-4bz-4cy+13cz-9cw-9dz+25dw$$
                      for $a,b,c,d,x,y,z,winmathbbR$.
                      If the base field is $mathbbC$, then the bilinear form (or rather, the sesquilinear form) is given by
                      $$leftlangle beginbmatrixa&b\c&dendbmatrix,beginbmatrixx&y\z&wendbmatrixrightrangle=abar x-abar y-bbar x+5bbar y-4bbar z-4cbar y+13cbar z-9cbar w-9dbar z+25dbar w$$
                      for $a,b,c,d,x,y,z,winmathbbC$.






                      share|cite|improve this answer



























                        up vote
                        4
                        down vote













                        Let $E_1:=beginbmatrix1&0\0&0endbmatrix$, $E_1:=beginbmatrix0&1\0&0endbmatrix$, $E_3:=beginbmatrix0&0\1&0endbmatrix$, and $E_4:=beginbmatrix0&0\0&1endbmatrix$. Then, the matrix of transformation sending $(E_1,E_2,E_3,E_4)$ to $(A_1,A_2,A_3,A_4)$ is
                        $$T:=beginbmatrix1&1&1&1\0&1&1&1\0&0&1&1\0&0&0&1endbmatrix,.$$
                        The required bilinear form in the basis $(A_1,A_2,A_3,A_4)$ is given by the matrix
                        $$B:=beginbmatrix1&0&0&0\0&4&0&0\0&0&9&0\0&0&0&16endbmatrix,.$$
                        Therefore, in the basis $(E_1,E_2,E_3,E_4)$, the bilinear form is given by the matrix
                        $$left(T^-1right)^top,B,T^-1=beginbmatrix1&-1&0&0\-1&5&-4&0\0&-4&13&-9\0&0&-9&25endbmatrix,.$$
                        In other words, this bilinear form is given by
                        $$leftlangle beginbmatrixa&b\c&dendbmatrix,beginbmatrixx&y\z&wendbmatrixrightrangle=ax-ay-bx+5by-4bz-4cy+13cz-9cw-9dz+25dw$$
                        for $a,b,c,d,x,y,z,winmathbbR$.
                        If the base field is $mathbbC$, then the bilinear form (or rather, the sesquilinear form) is given by
                        $$leftlangle beginbmatrixa&b\c&dendbmatrix,beginbmatrixx&y\z&wendbmatrixrightrangle=abar x-abar y-bbar x+5bbar y-4bbar z-4cbar y+13cbar z-9cbar w-9dbar z+25dbar w$$
                        for $a,b,c,d,x,y,z,winmathbbC$.






                        share|cite|improve this answer

























                          up vote
                          4
                          down vote










                          up vote
                          4
                          down vote









                          Let $E_1:=beginbmatrix1&0\0&0endbmatrix$, $E_1:=beginbmatrix0&1\0&0endbmatrix$, $E_3:=beginbmatrix0&0\1&0endbmatrix$, and $E_4:=beginbmatrix0&0\0&1endbmatrix$. Then, the matrix of transformation sending $(E_1,E_2,E_3,E_4)$ to $(A_1,A_2,A_3,A_4)$ is
                          $$T:=beginbmatrix1&1&1&1\0&1&1&1\0&0&1&1\0&0&0&1endbmatrix,.$$
                          The required bilinear form in the basis $(A_1,A_2,A_3,A_4)$ is given by the matrix
                          $$B:=beginbmatrix1&0&0&0\0&4&0&0\0&0&9&0\0&0&0&16endbmatrix,.$$
                          Therefore, in the basis $(E_1,E_2,E_3,E_4)$, the bilinear form is given by the matrix
                          $$left(T^-1right)^top,B,T^-1=beginbmatrix1&-1&0&0\-1&5&-4&0\0&-4&13&-9\0&0&-9&25endbmatrix,.$$
                          In other words, this bilinear form is given by
                          $$leftlangle beginbmatrixa&b\c&dendbmatrix,beginbmatrixx&y\z&wendbmatrixrightrangle=ax-ay-bx+5by-4bz-4cy+13cz-9cw-9dz+25dw$$
                          for $a,b,c,d,x,y,z,winmathbbR$.
                          If the base field is $mathbbC$, then the bilinear form (or rather, the sesquilinear form) is given by
                          $$leftlangle beginbmatrixa&b\c&dendbmatrix,beginbmatrixx&y\z&wendbmatrixrightrangle=abar x-abar y-bbar x+5bbar y-4bbar z-4cbar y+13cbar z-9cbar w-9dbar z+25dbar w$$
                          for $a,b,c,d,x,y,z,winmathbbC$.






                          share|cite|improve this answer















                          Let $E_1:=beginbmatrix1&0\0&0endbmatrix$, $E_1:=beginbmatrix0&1\0&0endbmatrix$, $E_3:=beginbmatrix0&0\1&0endbmatrix$, and $E_4:=beginbmatrix0&0\0&1endbmatrix$. Then, the matrix of transformation sending $(E_1,E_2,E_3,E_4)$ to $(A_1,A_2,A_3,A_4)$ is
                          $$T:=beginbmatrix1&1&1&1\0&1&1&1\0&0&1&1\0&0&0&1endbmatrix,.$$
                          The required bilinear form in the basis $(A_1,A_2,A_3,A_4)$ is given by the matrix
                          $$B:=beginbmatrix1&0&0&0\0&4&0&0\0&0&9&0\0&0&0&16endbmatrix,.$$
                          Therefore, in the basis $(E_1,E_2,E_3,E_4)$, the bilinear form is given by the matrix
                          $$left(T^-1right)^top,B,T^-1=beginbmatrix1&-1&0&0\-1&5&-4&0\0&-4&13&-9\0&0&-9&25endbmatrix,.$$
                          In other words, this bilinear form is given by
                          $$leftlangle beginbmatrixa&b\c&dendbmatrix,beginbmatrixx&y\z&wendbmatrixrightrangle=ax-ay-bx+5by-4bz-4cy+13cz-9cw-9dz+25dw$$
                          for $a,b,c,d,x,y,z,winmathbbR$.
                          If the base field is $mathbbC$, then the bilinear form (or rather, the sesquilinear form) is given by
                          $$leftlangle beginbmatrixa&b\c&dendbmatrix,beginbmatrixx&y\z&wendbmatrixrightrangle=abar x-abar y-bbar x+5bbar y-4bbar z-4cbar y+13cbar z-9cbar w-9dbar z+25dbar w$$
                          for $a,b,c,d,x,y,z,winmathbbC$.







                          share|cite|improve this answer















                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Jul 29 at 11:21


























                          answered Jul 29 at 11:12









                          Batominovski

                          22.9k22777




                          22.9k22777






















                               

                              draft saved


                              draft discarded


























                               


                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2865979%2fis-there-a-scalar-product-s-t-the-following-list-is-orthogonal%23new-answer', 'question_page');

                              );

                              Post as a guest













































































                              Comments

                              Popular posts from this blog

                              What is the equation of a 3D cone with generalised tilt?

                              Color the edges and diagonals of a regular polygon

                              Relationship between determinant of matrix and determinant of adjoint?