Is this generalization of CRT true?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












$a^n equiv b_1 bmod p_1$



$a^n equiv b_2 bmod p_2$



if $gcd(b_1,p_2) = gcd(b_2,p_1) = 1$ then $a^n equiv b_1 cdot b_2 bmod p_1cdot p_2$



$p_1$ and $p_2$ are not necessarily coprime.



edit



what about $gcd(p_1, p_2) = 1$ ?







share|cite|improve this question

















  • 1




    $a=5$, $n=1$, $b_1=2$, $p_1=3$, $b_2=3$, $p_2=2$, but $a^n=5notequiv 6=b_1b_2pmodp_1p_2=6$.
    – user578878
    Jul 29 at 16:12






  • 1




    To create a subscript, use the underscore. Now p_2 becomes $p_2$.
    – hardmath
    Jul 29 at 16:13






  • 1




    Same example as above.
    – user578878
    Jul 29 at 16:18










  • @nextpuzzle thanks
    – hjx
    Jul 29 at 16:20










  • Note that you do not solve CRT simultaneous equivalences by multiplication, in general.
    – Joffan
    Jul 29 at 16:37














up vote
0
down vote

favorite












$a^n equiv b_1 bmod p_1$



$a^n equiv b_2 bmod p_2$



if $gcd(b_1,p_2) = gcd(b_2,p_1) = 1$ then $a^n equiv b_1 cdot b_2 bmod p_1cdot p_2$



$p_1$ and $p_2$ are not necessarily coprime.



edit



what about $gcd(p_1, p_2) = 1$ ?







share|cite|improve this question

















  • 1




    $a=5$, $n=1$, $b_1=2$, $p_1=3$, $b_2=3$, $p_2=2$, but $a^n=5notequiv 6=b_1b_2pmodp_1p_2=6$.
    – user578878
    Jul 29 at 16:12






  • 1




    To create a subscript, use the underscore. Now p_2 becomes $p_2$.
    – hardmath
    Jul 29 at 16:13






  • 1




    Same example as above.
    – user578878
    Jul 29 at 16:18










  • @nextpuzzle thanks
    – hjx
    Jul 29 at 16:20










  • Note that you do not solve CRT simultaneous equivalences by multiplication, in general.
    – Joffan
    Jul 29 at 16:37












up vote
0
down vote

favorite









up vote
0
down vote

favorite











$a^n equiv b_1 bmod p_1$



$a^n equiv b_2 bmod p_2$



if $gcd(b_1,p_2) = gcd(b_2,p_1) = 1$ then $a^n equiv b_1 cdot b_2 bmod p_1cdot p_2$



$p_1$ and $p_2$ are not necessarily coprime.



edit



what about $gcd(p_1, p_2) = 1$ ?







share|cite|improve this question













$a^n equiv b_1 bmod p_1$



$a^n equiv b_2 bmod p_2$



if $gcd(b_1,p_2) = gcd(b_2,p_1) = 1$ then $a^n equiv b_1 cdot b_2 bmod p_1cdot p_2$



$p_1$ and $p_2$ are not necessarily coprime.



edit



what about $gcd(p_1, p_2) = 1$ ?









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 29 at 16:14
























asked Jul 29 at 16:06









hjx

36719




36719







  • 1




    $a=5$, $n=1$, $b_1=2$, $p_1=3$, $b_2=3$, $p_2=2$, but $a^n=5notequiv 6=b_1b_2pmodp_1p_2=6$.
    – user578878
    Jul 29 at 16:12






  • 1




    To create a subscript, use the underscore. Now p_2 becomes $p_2$.
    – hardmath
    Jul 29 at 16:13






  • 1




    Same example as above.
    – user578878
    Jul 29 at 16:18










  • @nextpuzzle thanks
    – hjx
    Jul 29 at 16:20










  • Note that you do not solve CRT simultaneous equivalences by multiplication, in general.
    – Joffan
    Jul 29 at 16:37












  • 1




    $a=5$, $n=1$, $b_1=2$, $p_1=3$, $b_2=3$, $p_2=2$, but $a^n=5notequiv 6=b_1b_2pmodp_1p_2=6$.
    – user578878
    Jul 29 at 16:12






  • 1




    To create a subscript, use the underscore. Now p_2 becomes $p_2$.
    – hardmath
    Jul 29 at 16:13






  • 1




    Same example as above.
    – user578878
    Jul 29 at 16:18










  • @nextpuzzle thanks
    – hjx
    Jul 29 at 16:20










  • Note that you do not solve CRT simultaneous equivalences by multiplication, in general.
    – Joffan
    Jul 29 at 16:37







1




1




$a=5$, $n=1$, $b_1=2$, $p_1=3$, $b_2=3$, $p_2=2$, but $a^n=5notequiv 6=b_1b_2pmodp_1p_2=6$.
– user578878
Jul 29 at 16:12




$a=5$, $n=1$, $b_1=2$, $p_1=3$, $b_2=3$, $p_2=2$, but $a^n=5notequiv 6=b_1b_2pmodp_1p_2=6$.
– user578878
Jul 29 at 16:12




1




1




To create a subscript, use the underscore. Now p_2 becomes $p_2$.
– hardmath
Jul 29 at 16:13




To create a subscript, use the underscore. Now p_2 becomes $p_2$.
– hardmath
Jul 29 at 16:13




1




1




Same example as above.
– user578878
Jul 29 at 16:18




Same example as above.
– user578878
Jul 29 at 16:18












@nextpuzzle thanks
– hjx
Jul 29 at 16:20




@nextpuzzle thanks
– hjx
Jul 29 at 16:20












Note that you do not solve CRT simultaneous equivalences by multiplication, in general.
– Joffan
Jul 29 at 16:37




Note that you do not solve CRT simultaneous equivalences by multiplication, in general.
– Joffan
Jul 29 at 16:37















active

oldest

votes











Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);








 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2866190%2fis-this-generalization-of-crt-true%23new-answer', 'question_page');

);

Post as a guest



































active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes










 

draft saved


draft discarded


























 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2866190%2fis-this-generalization-of-crt-true%23new-answer', 'question_page');

);

Post as a guest













































































Comments

Popular posts from this blog

What is the equation of a 3D cone with generalised tilt?

Color the edges and diagonals of a regular polygon

Relationship between determinant of matrix and determinant of adjoint?