Is this generalization of CRT true?
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
$a^n equiv b_1 bmod p_1$
$a^n equiv b_2 bmod p_2$
if $gcd(b_1,p_2) = gcd(b_2,p_1) = 1$ then $a^n equiv b_1 cdot b_2 bmod p_1cdot p_2$
$p_1$ and $p_2$ are not necessarily coprime.
edit
what about $gcd(p_1, p_2) = 1$ ?
discrete-mathematics
add a comment |Â
up vote
0
down vote
favorite
$a^n equiv b_1 bmod p_1$
$a^n equiv b_2 bmod p_2$
if $gcd(b_1,p_2) = gcd(b_2,p_1) = 1$ then $a^n equiv b_1 cdot b_2 bmod p_1cdot p_2$
$p_1$ and $p_2$ are not necessarily coprime.
edit
what about $gcd(p_1, p_2) = 1$ ?
discrete-mathematics
1
$a=5$, $n=1$, $b_1=2$, $p_1=3$, $b_2=3$, $p_2=2$, but $a^n=5notequiv 6=b_1b_2pmodp_1p_2=6$.
– user578878
Jul 29 at 16:12
1
To create a subscript, use the underscore. Nowp_2
becomes $p_2$.
– hardmath
Jul 29 at 16:13
1
Same example as above.
– user578878
Jul 29 at 16:18
@nextpuzzle thanks
– hjx
Jul 29 at 16:20
Note that you do not solve CRT simultaneous equivalences by multiplication, in general.
– Joffan
Jul 29 at 16:37
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
$a^n equiv b_1 bmod p_1$
$a^n equiv b_2 bmod p_2$
if $gcd(b_1,p_2) = gcd(b_2,p_1) = 1$ then $a^n equiv b_1 cdot b_2 bmod p_1cdot p_2$
$p_1$ and $p_2$ are not necessarily coprime.
edit
what about $gcd(p_1, p_2) = 1$ ?
discrete-mathematics
$a^n equiv b_1 bmod p_1$
$a^n equiv b_2 bmod p_2$
if $gcd(b_1,p_2) = gcd(b_2,p_1) = 1$ then $a^n equiv b_1 cdot b_2 bmod p_1cdot p_2$
$p_1$ and $p_2$ are not necessarily coprime.
edit
what about $gcd(p_1, p_2) = 1$ ?
discrete-mathematics
edited Jul 29 at 16:14
asked Jul 29 at 16:06
hjx
36719
36719
1
$a=5$, $n=1$, $b_1=2$, $p_1=3$, $b_2=3$, $p_2=2$, but $a^n=5notequiv 6=b_1b_2pmodp_1p_2=6$.
– user578878
Jul 29 at 16:12
1
To create a subscript, use the underscore. Nowp_2
becomes $p_2$.
– hardmath
Jul 29 at 16:13
1
Same example as above.
– user578878
Jul 29 at 16:18
@nextpuzzle thanks
– hjx
Jul 29 at 16:20
Note that you do not solve CRT simultaneous equivalences by multiplication, in general.
– Joffan
Jul 29 at 16:37
add a comment |Â
1
$a=5$, $n=1$, $b_1=2$, $p_1=3$, $b_2=3$, $p_2=2$, but $a^n=5notequiv 6=b_1b_2pmodp_1p_2=6$.
– user578878
Jul 29 at 16:12
1
To create a subscript, use the underscore. Nowp_2
becomes $p_2$.
– hardmath
Jul 29 at 16:13
1
Same example as above.
– user578878
Jul 29 at 16:18
@nextpuzzle thanks
– hjx
Jul 29 at 16:20
Note that you do not solve CRT simultaneous equivalences by multiplication, in general.
– Joffan
Jul 29 at 16:37
1
1
$a=5$, $n=1$, $b_1=2$, $p_1=3$, $b_2=3$, $p_2=2$, but $a^n=5notequiv 6=b_1b_2pmodp_1p_2=6$.
– user578878
Jul 29 at 16:12
$a=5$, $n=1$, $b_1=2$, $p_1=3$, $b_2=3$, $p_2=2$, but $a^n=5notequiv 6=b_1b_2pmodp_1p_2=6$.
– user578878
Jul 29 at 16:12
1
1
To create a subscript, use the underscore. Now
p_2
becomes $p_2$.– hardmath
Jul 29 at 16:13
To create a subscript, use the underscore. Now
p_2
becomes $p_2$.– hardmath
Jul 29 at 16:13
1
1
Same example as above.
– user578878
Jul 29 at 16:18
Same example as above.
– user578878
Jul 29 at 16:18
@nextpuzzle thanks
– hjx
Jul 29 at 16:20
@nextpuzzle thanks
– hjx
Jul 29 at 16:20
Note that you do not solve CRT simultaneous equivalences by multiplication, in general.
– Joffan
Jul 29 at 16:37
Note that you do not solve CRT simultaneous equivalences by multiplication, in general.
– Joffan
Jul 29 at 16:37
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2866190%2fis-this-generalization-of-crt-true%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
1
$a=5$, $n=1$, $b_1=2$, $p_1=3$, $b_2=3$, $p_2=2$, but $a^n=5notequiv 6=b_1b_2pmodp_1p_2=6$.
– user578878
Jul 29 at 16:12
1
To create a subscript, use the underscore. Now
p_2
becomes $p_2$.– hardmath
Jul 29 at 16:13
1
Same example as above.
– user578878
Jul 29 at 16:18
@nextpuzzle thanks
– hjx
Jul 29 at 16:20
Note that you do not solve CRT simultaneous equivalences by multiplication, in general.
– Joffan
Jul 29 at 16:37