Length Of Curve $gamma(t)=(t cos t,tsin t)$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite
2












Find the length of the curve $gamma(t)=(t cos t,tsin t)$, $tin[0,pi]$



So I first start of saying that the curve is in $C^1$ and therefore I can use the $L(gamma)=int_a^b|gamma'(t)|dt$



Is it right?



So



$gamma'(t)=( cos t-t sin t,sin t+tcos t)$



$|gamma'(t)|= sqrt(cos t-t sin t)^2+(sin t+tcos t)^2=\=sqrtcos^2t -2tcos t sin t+t^2sin ^2t+sin ^2t+2t cos t sin t+t^2cos ^2t=sqrt1+t^2$



So



$int_0^pisqrt1+t^2dt$



$t=tantheta, dt=sec theta d theta$



$int_0^pisqrt1+tan^2 t sec theta d theta=int_0^pisec^3 theta d theta=int_0^pisec theta cdotsec^2theta dtheta=int_0^pisec theta cdot(1+tan^2theta) dtheta$



$u=tan theta, du=sec theta dtheta$



$int_0^pi(1+u^2) du=u+fracu^33|_0^pi=tantheta+fractan^3theta3|_0^pi=sqrt1+t^2+(1+t^2)^frac32|_0^pi=\=sqrt1+pi^2+(1+pi^2)^frac32-2$



Which it wrong where is the mistake?







share|cite|improve this question

















  • 1




    When you make the change of variables from $t$ to $tan(theta )$, should the bounds of integration also change?
    – gd1035
    Jul 24 at 19:50










  • @gd1035 correct, but also the indefine integral does not come out right according to Wolfram
    – newhere
    Jul 24 at 20:41






  • 1




    $int sqrt1 + t^2dt$ could be looked up in a table of integrals like here: integral-table.com/downloads/single-page-integral-table.pdf
    – gd1035
    Jul 24 at 20:52














up vote
2
down vote

favorite
2












Find the length of the curve $gamma(t)=(t cos t,tsin t)$, $tin[0,pi]$



So I first start of saying that the curve is in $C^1$ and therefore I can use the $L(gamma)=int_a^b|gamma'(t)|dt$



Is it right?



So



$gamma'(t)=( cos t-t sin t,sin t+tcos t)$



$|gamma'(t)|= sqrt(cos t-t sin t)^2+(sin t+tcos t)^2=\=sqrtcos^2t -2tcos t sin t+t^2sin ^2t+sin ^2t+2t cos t sin t+t^2cos ^2t=sqrt1+t^2$



So



$int_0^pisqrt1+t^2dt$



$t=tantheta, dt=sec theta d theta$



$int_0^pisqrt1+tan^2 t sec theta d theta=int_0^pisec^3 theta d theta=int_0^pisec theta cdotsec^2theta dtheta=int_0^pisec theta cdot(1+tan^2theta) dtheta$



$u=tan theta, du=sec theta dtheta$



$int_0^pi(1+u^2) du=u+fracu^33|_0^pi=tantheta+fractan^3theta3|_0^pi=sqrt1+t^2+(1+t^2)^frac32|_0^pi=\=sqrt1+pi^2+(1+pi^2)^frac32-2$



Which it wrong where is the mistake?







share|cite|improve this question

















  • 1




    When you make the change of variables from $t$ to $tan(theta )$, should the bounds of integration also change?
    – gd1035
    Jul 24 at 19:50










  • @gd1035 correct, but also the indefine integral does not come out right according to Wolfram
    – newhere
    Jul 24 at 20:41






  • 1




    $int sqrt1 + t^2dt$ could be looked up in a table of integrals like here: integral-table.com/downloads/single-page-integral-table.pdf
    – gd1035
    Jul 24 at 20:52












up vote
2
down vote

favorite
2









up vote
2
down vote

favorite
2






2





Find the length of the curve $gamma(t)=(t cos t,tsin t)$, $tin[0,pi]$



So I first start of saying that the curve is in $C^1$ and therefore I can use the $L(gamma)=int_a^b|gamma'(t)|dt$



Is it right?



So



$gamma'(t)=( cos t-t sin t,sin t+tcos t)$



$|gamma'(t)|= sqrt(cos t-t sin t)^2+(sin t+tcos t)^2=\=sqrtcos^2t -2tcos t sin t+t^2sin ^2t+sin ^2t+2t cos t sin t+t^2cos ^2t=sqrt1+t^2$



So



$int_0^pisqrt1+t^2dt$



$t=tantheta, dt=sec theta d theta$



$int_0^pisqrt1+tan^2 t sec theta d theta=int_0^pisec^3 theta d theta=int_0^pisec theta cdotsec^2theta dtheta=int_0^pisec theta cdot(1+tan^2theta) dtheta$



$u=tan theta, du=sec theta dtheta$



$int_0^pi(1+u^2) du=u+fracu^33|_0^pi=tantheta+fractan^3theta3|_0^pi=sqrt1+t^2+(1+t^2)^frac32|_0^pi=\=sqrt1+pi^2+(1+pi^2)^frac32-2$



Which it wrong where is the mistake?







share|cite|improve this question













Find the length of the curve $gamma(t)=(t cos t,tsin t)$, $tin[0,pi]$



So I first start of saying that the curve is in $C^1$ and therefore I can use the $L(gamma)=int_a^b|gamma'(t)|dt$



Is it right?



So



$gamma'(t)=( cos t-t sin t,sin t+tcos t)$



$|gamma'(t)|= sqrt(cos t-t sin t)^2+(sin t+tcos t)^2=\=sqrtcos^2t -2tcos t sin t+t^2sin ^2t+sin ^2t+2t cos t sin t+t^2cos ^2t=sqrt1+t^2$



So



$int_0^pisqrt1+t^2dt$



$t=tantheta, dt=sec theta d theta$



$int_0^pisqrt1+tan^2 t sec theta d theta=int_0^pisec^3 theta d theta=int_0^pisec theta cdotsec^2theta dtheta=int_0^pisec theta cdot(1+tan^2theta) dtheta$



$u=tan theta, du=sec theta dtheta$



$int_0^pi(1+u^2) du=u+fracu^33|_0^pi=tantheta+fractan^3theta3|_0^pi=sqrt1+t^2+(1+t^2)^frac32|_0^pi=\=sqrt1+pi^2+(1+pi^2)^frac32-2$



Which it wrong where is the mistake?









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 25 at 5:52









CiaPan

9,85311044




9,85311044









asked Jul 24 at 19:45









newhere

742310




742310







  • 1




    When you make the change of variables from $t$ to $tan(theta )$, should the bounds of integration also change?
    – gd1035
    Jul 24 at 19:50










  • @gd1035 correct, but also the indefine integral does not come out right according to Wolfram
    – newhere
    Jul 24 at 20:41






  • 1




    $int sqrt1 + t^2dt$ could be looked up in a table of integrals like here: integral-table.com/downloads/single-page-integral-table.pdf
    – gd1035
    Jul 24 at 20:52












  • 1




    When you make the change of variables from $t$ to $tan(theta )$, should the bounds of integration also change?
    – gd1035
    Jul 24 at 19:50










  • @gd1035 correct, but also the indefine integral does not come out right according to Wolfram
    – newhere
    Jul 24 at 20:41






  • 1




    $int sqrt1 + t^2dt$ could be looked up in a table of integrals like here: integral-table.com/downloads/single-page-integral-table.pdf
    – gd1035
    Jul 24 at 20:52







1




1




When you make the change of variables from $t$ to $tan(theta )$, should the bounds of integration also change?
– gd1035
Jul 24 at 19:50




When you make the change of variables from $t$ to $tan(theta )$, should the bounds of integration also change?
– gd1035
Jul 24 at 19:50












@gd1035 correct, but also the indefine integral does not come out right according to Wolfram
– newhere
Jul 24 at 20:41




@gd1035 correct, but also the indefine integral does not come out right according to Wolfram
– newhere
Jul 24 at 20:41




1




1




$int sqrt1 + t^2dt$ could be looked up in a table of integrals like here: integral-table.com/downloads/single-page-integral-table.pdf
– gd1035
Jul 24 at 20:52




$int sqrt1 + t^2dt$ could be looked up in a table of integrals like here: integral-table.com/downloads/single-page-integral-table.pdf
– gd1035
Jul 24 at 20:52










3 Answers
3






active

oldest

votes

















up vote
2
down vote



accepted










Your integral is $frac12[tsqrt1+t^2+ln(t+sqrt1+t^2)]_0^pi=fracpisqrt1+pi^2+ln(pi+sqrt1+pi^2)2$. Your substitution $t=tantheta$ would also finish the problem (see here), but the upper limit must become $arctanpi$.






share|cite|improve this answer




























    up vote
    1
    down vote













    After the substitution $t=tan theta$ you must change the limits of integration and, more important, you have
    $$
    dt=sec^2theta dtheta
    $$



    (and the same for



    $
    u=tan theta qquad du=sec^2 theta d theta
    quad$
    that returns the integration to the starting point: $int_0^pisqrt1+u^2du$






    share|cite|improve this answer



















    • 1




      So I need to try different method then the $u$ substitution
      – newhere
      Jul 24 at 21:29

















    up vote
    1
    down vote













    What about hyperbolic functions?:



    $$t=sinh ximplies dt=cosh x,dximpliesint_0^pisqrt1+t^2,dt=int_0^textarcsinhpisqrt1+sinh^2xcdotcosh xdx=$$



    $$=int_0^textarcsinhpicosh^2x,dx=left.frac12left(x+sinh xcosh xright)right|_0^textarcsinhpi=frac12left(textarcsinhpi+pisqrt1+pi^2right)$$






    share|cite|improve this answer





















      Your Answer




      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: false,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );








       

      draft saved


      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2861698%2flength-of-curve-gammat-t-cos-t-t-sin-t%23new-answer', 'question_page');

      );

      Post as a guest






























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      2
      down vote



      accepted










      Your integral is $frac12[tsqrt1+t^2+ln(t+sqrt1+t^2)]_0^pi=fracpisqrt1+pi^2+ln(pi+sqrt1+pi^2)2$. Your substitution $t=tantheta$ would also finish the problem (see here), but the upper limit must become $arctanpi$.






      share|cite|improve this answer

























        up vote
        2
        down vote



        accepted










        Your integral is $frac12[tsqrt1+t^2+ln(t+sqrt1+t^2)]_0^pi=fracpisqrt1+pi^2+ln(pi+sqrt1+pi^2)2$. Your substitution $t=tantheta$ would also finish the problem (see here), but the upper limit must become $arctanpi$.






        share|cite|improve this answer























          up vote
          2
          down vote



          accepted







          up vote
          2
          down vote



          accepted






          Your integral is $frac12[tsqrt1+t^2+ln(t+sqrt1+t^2)]_0^pi=fracpisqrt1+pi^2+ln(pi+sqrt1+pi^2)2$. Your substitution $t=tantheta$ would also finish the problem (see here), but the upper limit must become $arctanpi$.






          share|cite|improve this answer













          Your integral is $frac12[tsqrt1+t^2+ln(t+sqrt1+t^2)]_0^pi=fracpisqrt1+pi^2+ln(pi+sqrt1+pi^2)2$. Your substitution $t=tantheta$ would also finish the problem (see here), but the upper limit must become $arctanpi$.







          share|cite|improve this answer













          share|cite|improve this answer



          share|cite|improve this answer











          answered Jul 25 at 5:46









          J.G.

          13.1k11424




          13.1k11424




















              up vote
              1
              down vote













              After the substitution $t=tan theta$ you must change the limits of integration and, more important, you have
              $$
              dt=sec^2theta dtheta
              $$



              (and the same for



              $
              u=tan theta qquad du=sec^2 theta d theta
              quad$
              that returns the integration to the starting point: $int_0^pisqrt1+u^2du$






              share|cite|improve this answer



















              • 1




                So I need to try different method then the $u$ substitution
                – newhere
                Jul 24 at 21:29














              up vote
              1
              down vote













              After the substitution $t=tan theta$ you must change the limits of integration and, more important, you have
              $$
              dt=sec^2theta dtheta
              $$



              (and the same for



              $
              u=tan theta qquad du=sec^2 theta d theta
              quad$
              that returns the integration to the starting point: $int_0^pisqrt1+u^2du$






              share|cite|improve this answer



















              • 1




                So I need to try different method then the $u$ substitution
                – newhere
                Jul 24 at 21:29












              up vote
              1
              down vote










              up vote
              1
              down vote









              After the substitution $t=tan theta$ you must change the limits of integration and, more important, you have
              $$
              dt=sec^2theta dtheta
              $$



              (and the same for



              $
              u=tan theta qquad du=sec^2 theta d theta
              quad$
              that returns the integration to the starting point: $int_0^pisqrt1+u^2du$






              share|cite|improve this answer















              After the substitution $t=tan theta$ you must change the limits of integration and, more important, you have
              $$
              dt=sec^2theta dtheta
              $$



              (and the same for



              $
              u=tan theta qquad du=sec^2 theta d theta
              quad$
              that returns the integration to the starting point: $int_0^pisqrt1+u^2du$







              share|cite|improve this answer















              share|cite|improve this answer



              share|cite|improve this answer








              edited Jul 24 at 20:51


























              answered Jul 24 at 20:43









              Emilio Novati

              50.2k43170




              50.2k43170







              • 1




                So I need to try different method then the $u$ substitution
                – newhere
                Jul 24 at 21:29












              • 1




                So I need to try different method then the $u$ substitution
                – newhere
                Jul 24 at 21:29







              1




              1




              So I need to try different method then the $u$ substitution
              – newhere
              Jul 24 at 21:29




              So I need to try different method then the $u$ substitution
              – newhere
              Jul 24 at 21:29










              up vote
              1
              down vote













              What about hyperbolic functions?:



              $$t=sinh ximplies dt=cosh x,dximpliesint_0^pisqrt1+t^2,dt=int_0^textarcsinhpisqrt1+sinh^2xcdotcosh xdx=$$



              $$=int_0^textarcsinhpicosh^2x,dx=left.frac12left(x+sinh xcosh xright)right|_0^textarcsinhpi=frac12left(textarcsinhpi+pisqrt1+pi^2right)$$






              share|cite|improve this answer

























                up vote
                1
                down vote













                What about hyperbolic functions?:



                $$t=sinh ximplies dt=cosh x,dximpliesint_0^pisqrt1+t^2,dt=int_0^textarcsinhpisqrt1+sinh^2xcdotcosh xdx=$$



                $$=int_0^textarcsinhpicosh^2x,dx=left.frac12left(x+sinh xcosh xright)right|_0^textarcsinhpi=frac12left(textarcsinhpi+pisqrt1+pi^2right)$$






                share|cite|improve this answer























                  up vote
                  1
                  down vote










                  up vote
                  1
                  down vote









                  What about hyperbolic functions?:



                  $$t=sinh ximplies dt=cosh x,dximpliesint_0^pisqrt1+t^2,dt=int_0^textarcsinhpisqrt1+sinh^2xcdotcosh xdx=$$



                  $$=int_0^textarcsinhpicosh^2x,dx=left.frac12left(x+sinh xcosh xright)right|_0^textarcsinhpi=frac12left(textarcsinhpi+pisqrt1+pi^2right)$$






                  share|cite|improve this answer













                  What about hyperbolic functions?:



                  $$t=sinh ximplies dt=cosh x,dximpliesint_0^pisqrt1+t^2,dt=int_0^textarcsinhpisqrt1+sinh^2xcdotcosh xdx=$$



                  $$=int_0^textarcsinhpicosh^2x,dx=left.frac12left(x+sinh xcosh xright)right|_0^textarcsinhpi=frac12left(textarcsinhpi+pisqrt1+pi^2right)$$







                  share|cite|improve this answer













                  share|cite|improve this answer



                  share|cite|improve this answer











                  answered Jul 25 at 14:18









                  DonAntonio

                  172k1483217




                  172k1483217






















                       

                      draft saved


                      draft discarded


























                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2861698%2flength-of-curve-gammat-t-cos-t-t-sin-t%23new-answer', 'question_page');

                      );

                      Post as a guest













































































                      Comments

                      Popular posts from this blog

                      What is the equation of a 3D cone with generalised tilt?

                      Color the edges and diagonals of a regular polygon

                      Relationship between determinant of matrix and determinant of adjoint?