Let $f_n_ninmathbbN$ a Cauchy sequence in $C[0,1]$. then $f_n(x_0)_ninmathbbN$ is Cauchy
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Let $f_n_ninmathbbN$ a Cauchy sequence in $C[0,1]$. Prove for each $x_0in[0,1]$ the sequence $f_n(x_0)_ninmathbbN$ is Cauchy in $mathbbR$
My work
Let $epsilon >0$
As $f_n_ninmathbbN$ then exists $NinmathbbN$ sucht that if $n,mgeq N$ then $d(f_n,f_m)<epsilon$
Here I'm stuck. Can someone help me?
general-topology
add a comment |Â
up vote
0
down vote
favorite
Let $f_n_ninmathbbN$ a Cauchy sequence in $C[0,1]$. Prove for each $x_0in[0,1]$ the sequence $f_n(x_0)_ninmathbbN$ is Cauchy in $mathbbR$
My work
Let $epsilon >0$
As $f_n_ninmathbbN$ then exists $NinmathbbN$ sucht that if $n,mgeq N$ then $d(f_n,f_m)<epsilon$
Here I'm stuck. Can someone help me?
general-topology
2
Use the definition of $d(f_n,f_m)$. What does $d(f_n,f_m)<varepsilon$ mean in terms of the definition?
– Lorenzo Quarisa
Jul 15 at 20:21
@LorenzoQuarisa $d(f,g)=sup$ in my definition.
– Bvss12
Jul 15 at 20:27
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $f_n_ninmathbbN$ a Cauchy sequence in $C[0,1]$. Prove for each $x_0in[0,1]$ the sequence $f_n(x_0)_ninmathbbN$ is Cauchy in $mathbbR$
My work
Let $epsilon >0$
As $f_n_ninmathbbN$ then exists $NinmathbbN$ sucht that if $n,mgeq N$ then $d(f_n,f_m)<epsilon$
Here I'm stuck. Can someone help me?
general-topology
Let $f_n_ninmathbbN$ a Cauchy sequence in $C[0,1]$. Prove for each $x_0in[0,1]$ the sequence $f_n(x_0)_ninmathbbN$ is Cauchy in $mathbbR$
My work
Let $epsilon >0$
As $f_n_ninmathbbN$ then exists $NinmathbbN$ sucht that if $n,mgeq N$ then $d(f_n,f_m)<epsilon$
Here I'm stuck. Can someone help me?
general-topology
edited Jul 15 at 20:20
Bernard
110k635103
110k635103
asked Jul 15 at 20:19


Bvss12
1,609516
1,609516
2
Use the definition of $d(f_n,f_m)$. What does $d(f_n,f_m)<varepsilon$ mean in terms of the definition?
– Lorenzo Quarisa
Jul 15 at 20:21
@LorenzoQuarisa $d(f,g)=sup$ in my definition.
– Bvss12
Jul 15 at 20:27
add a comment |Â
2
Use the definition of $d(f_n,f_m)$. What does $d(f_n,f_m)<varepsilon$ mean in terms of the definition?
– Lorenzo Quarisa
Jul 15 at 20:21
@LorenzoQuarisa $d(f,g)=sup$ in my definition.
– Bvss12
Jul 15 at 20:27
2
2
Use the definition of $d(f_n,f_m)$. What does $d(f_n,f_m)<varepsilon$ mean in terms of the definition?
– Lorenzo Quarisa
Jul 15 at 20:21
Use the definition of $d(f_n,f_m)$. What does $d(f_n,f_m)<varepsilon$ mean in terms of the definition?
– Lorenzo Quarisa
Jul 15 at 20:21
@LorenzoQuarisa $d(f,g)=sup$ in my definition.
– Bvss12
Jul 15 at 20:27
@LorenzoQuarisa $d(f,g)=sup$ in my definition.
– Bvss12
Jul 15 at 20:27
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
Hint:
How is the distance $d(f, g)$ in the vector space $mathcal C[0,1]$ defined?
$d(f,g)=sup$ in my definition.
– Bvss12
Jul 15 at 20:25
So for each $x in [0,1]$, one has $;|f(x)-g(x)|le d(f,g)$, right?
– Bernard
Jul 15 at 20:31
$|f_n(x_0)-f_m(x_0)|<supf_n(x)-f_m(x)<epsilon$ then $f_n(x_0)$ is cauchy in $mathbbR$ is correct this Bernard? Thanks for help me (:
– Bvss12
Jul 15 at 20:32
Quite cotrect.. Unrelated: for proper min, max, &c., in maths formulæ, type them code asmin
ormax
.
– Bernard
Jul 15 at 20:39
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Hint:
How is the distance $d(f, g)$ in the vector space $mathcal C[0,1]$ defined?
$d(f,g)=sup$ in my definition.
– Bvss12
Jul 15 at 20:25
So for each $x in [0,1]$, one has $;|f(x)-g(x)|le d(f,g)$, right?
– Bernard
Jul 15 at 20:31
$|f_n(x_0)-f_m(x_0)|<supf_n(x)-f_m(x)<epsilon$ then $f_n(x_0)$ is cauchy in $mathbbR$ is correct this Bernard? Thanks for help me (:
– Bvss12
Jul 15 at 20:32
Quite cotrect.. Unrelated: for proper min, max, &c., in maths formulæ, type them code asmin
ormax
.
– Bernard
Jul 15 at 20:39
add a comment |Â
up vote
1
down vote
accepted
Hint:
How is the distance $d(f, g)$ in the vector space $mathcal C[0,1]$ defined?
$d(f,g)=sup$ in my definition.
– Bvss12
Jul 15 at 20:25
So for each $x in [0,1]$, one has $;|f(x)-g(x)|le d(f,g)$, right?
– Bernard
Jul 15 at 20:31
$|f_n(x_0)-f_m(x_0)|<supf_n(x)-f_m(x)<epsilon$ then $f_n(x_0)$ is cauchy in $mathbbR$ is correct this Bernard? Thanks for help me (:
– Bvss12
Jul 15 at 20:32
Quite cotrect.. Unrelated: for proper min, max, &c., in maths formulæ, type them code asmin
ormax
.
– Bernard
Jul 15 at 20:39
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Hint:
How is the distance $d(f, g)$ in the vector space $mathcal C[0,1]$ defined?
Hint:
How is the distance $d(f, g)$ in the vector space $mathcal C[0,1]$ defined?
answered Jul 15 at 20:24
Bernard
110k635103
110k635103
$d(f,g)=sup$ in my definition.
– Bvss12
Jul 15 at 20:25
So for each $x in [0,1]$, one has $;|f(x)-g(x)|le d(f,g)$, right?
– Bernard
Jul 15 at 20:31
$|f_n(x_0)-f_m(x_0)|<supf_n(x)-f_m(x)<epsilon$ then $f_n(x_0)$ is cauchy in $mathbbR$ is correct this Bernard? Thanks for help me (:
– Bvss12
Jul 15 at 20:32
Quite cotrect.. Unrelated: for proper min, max, &c., in maths formulæ, type them code asmin
ormax
.
– Bernard
Jul 15 at 20:39
add a comment |Â
$d(f,g)=sup$ in my definition.
– Bvss12
Jul 15 at 20:25
So for each $x in [0,1]$, one has $;|f(x)-g(x)|le d(f,g)$, right?
– Bernard
Jul 15 at 20:31
$|f_n(x_0)-f_m(x_0)|<supf_n(x)-f_m(x)<epsilon$ then $f_n(x_0)$ is cauchy in $mathbbR$ is correct this Bernard? Thanks for help me (:
– Bvss12
Jul 15 at 20:32
Quite cotrect.. Unrelated: for proper min, max, &c., in maths formulæ, type them code asmin
ormax
.
– Bernard
Jul 15 at 20:39
$d(f,g)=sup$ in my definition.
– Bvss12
Jul 15 at 20:25
$d(f,g)=sup$ in my definition.
– Bvss12
Jul 15 at 20:25
So for each $x in [0,1]$, one has $;|f(x)-g(x)|le d(f,g)$, right?
– Bernard
Jul 15 at 20:31
So for each $x in [0,1]$, one has $;|f(x)-g(x)|le d(f,g)$, right?
– Bernard
Jul 15 at 20:31
$|f_n(x_0)-f_m(x_0)|<supf_n(x)-f_m(x)<epsilon$ then $f_n(x_0)$ is cauchy in $mathbbR$ is correct this Bernard? Thanks for help me (:
– Bvss12
Jul 15 at 20:32
$|f_n(x_0)-f_m(x_0)|<supf_n(x)-f_m(x)<epsilon$ then $f_n(x_0)$ is cauchy in $mathbbR$ is correct this Bernard? Thanks for help me (:
– Bvss12
Jul 15 at 20:32
Quite cotrect.. Unrelated: for proper min, max, &c., in maths formulæ, type them code as
min
or max
.– Bernard
Jul 15 at 20:39
Quite cotrect.. Unrelated: for proper min, max, &c., in maths formulæ, type them code as
min
or max
.– Bernard
Jul 15 at 20:39
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2852813%2flet-f-n-n-in-mathbbn-a-cauchy-sequence-in-c0-1-then-f-nx-0%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
2
Use the definition of $d(f_n,f_m)$. What does $d(f_n,f_m)<varepsilon$ mean in terms of the definition?
– Lorenzo Quarisa
Jul 15 at 20:21
@LorenzoQuarisa $d(f,g)=sup$ in my definition.
– Bvss12
Jul 15 at 20:27