Let $R_n = underbrace11ldots1_n$. Prove that if $(n, m) = 1$, then $(R_n, R_m) = 1$.

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite
1












Let $R_n = underbrace11ldots1_n$.



1) Prove that if $n mid m$, then $R_n mid R_m$.



2) Prove that if $(n, m) = 1$, then $(R_n, R_m) = 1$.



I have solved only the first task:



$$m = nk Rightarrow R_m = underbrace11ldots1_nk\
R_m = R_n cdot underbrace1underbrace00ldots0_n-11underbrace00ldots0_n-11 ldots 1underbrace00ldots0_n-11_k mbox of 1$$



Using the sum of geometric progressions, we can write that $R_n = frac10^n-19$. But I don't know how to continue the second task. Can you help me solve it? Thanks!







share|cite|improve this question

















  • 2




    Prove that for $n>m$, $gcd(R_m,R_n)=gcd(R_m,R_n-m)$.
    – Lord Shark the Unknown
    Jul 29 at 17:56














up vote
2
down vote

favorite
1












Let $R_n = underbrace11ldots1_n$.



1) Prove that if $n mid m$, then $R_n mid R_m$.



2) Prove that if $(n, m) = 1$, then $(R_n, R_m) = 1$.



I have solved only the first task:



$$m = nk Rightarrow R_m = underbrace11ldots1_nk\
R_m = R_n cdot underbrace1underbrace00ldots0_n-11underbrace00ldots0_n-11 ldots 1underbrace00ldots0_n-11_k mbox of 1$$



Using the sum of geometric progressions, we can write that $R_n = frac10^n-19$. But I don't know how to continue the second task. Can you help me solve it? Thanks!







share|cite|improve this question

















  • 2




    Prove that for $n>m$, $gcd(R_m,R_n)=gcd(R_m,R_n-m)$.
    – Lord Shark the Unknown
    Jul 29 at 17:56












up vote
2
down vote

favorite
1









up vote
2
down vote

favorite
1






1





Let $R_n = underbrace11ldots1_n$.



1) Prove that if $n mid m$, then $R_n mid R_m$.



2) Prove that if $(n, m) = 1$, then $(R_n, R_m) = 1$.



I have solved only the first task:



$$m = nk Rightarrow R_m = underbrace11ldots1_nk\
R_m = R_n cdot underbrace1underbrace00ldots0_n-11underbrace00ldots0_n-11 ldots 1underbrace00ldots0_n-11_k mbox of 1$$



Using the sum of geometric progressions, we can write that $R_n = frac10^n-19$. But I don't know how to continue the second task. Can you help me solve it? Thanks!







share|cite|improve this question













Let $R_n = underbrace11ldots1_n$.



1) Prove that if $n mid m$, then $R_n mid R_m$.



2) Prove that if $(n, m) = 1$, then $(R_n, R_m) = 1$.



I have solved only the first task:



$$m = nk Rightarrow R_m = underbrace11ldots1_nk\
R_m = R_n cdot underbrace1underbrace00ldots0_n-11underbrace00ldots0_n-11 ldots 1underbrace00ldots0_n-11_k mbox of 1$$



Using the sum of geometric progressions, we can write that $R_n = frac10^n-19$. But I don't know how to continue the second task. Can you help me solve it? Thanks!









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 29 at 22:56
























asked Jul 29 at 17:53









Iulian Oleniuc

3619




3619







  • 2




    Prove that for $n>m$, $gcd(R_m,R_n)=gcd(R_m,R_n-m)$.
    – Lord Shark the Unknown
    Jul 29 at 17:56












  • 2




    Prove that for $n>m$, $gcd(R_m,R_n)=gcd(R_m,R_n-m)$.
    – Lord Shark the Unknown
    Jul 29 at 17:56







2




2




Prove that for $n>m$, $gcd(R_m,R_n)=gcd(R_m,R_n-m)$.
– Lord Shark the Unknown
Jul 29 at 17:56




Prove that for $n>m$, $gcd(R_m,R_n)=gcd(R_m,R_n-m)$.
– Lord Shark the Unknown
Jul 29 at 17:56










3 Answers
3






active

oldest

votes

















up vote
2
down vote



accepted










1) Write $m=nk$ then $$10^m-1 =10^nk-1 = (10^n-1)Big((10^n)^k-1+...+10^n+1Big)$$
so $$10^n-1mid 10^m-1implies R_nmid R_m$$



Hint for 2):



Use the fact that $$gcd(a^n-1,a^m-1)= a^gcd (m,n)-1$$






share|cite|improve this answer




























    up vote
    1
    down vote













    Let $dmid m$ and $dmid n,$ so that $m=dj$ and $n=dk$ for some positive integers $j,k.$ Now, note that, for example, $$R_m=frac10^dj-19=fracleft(10^dright)^j-1^j9=frac10^d-19cdotsum_i=0^j-1left(10^dright)^i=R_dcdotsum_i=0^j-1left(10^dright)^i,$$ so that $R_dmid R_m,$ and likewise, $R_dmid R_n.$ (Incidentally, this is a more rigorous way to prove your first claim.) In particular, this holds true when $d=gcd(m,n).$ On the other hand, we can show that if $dmid R_m$ and $dmid R_n,$ then $dmid R_gcd(m,n),$ so that $$R_gcd(m,n)=gcdleft(R_m,R_nright).$$ What can we then conclude?






    share|cite|improve this answer




























      up vote
      1
      down vote













      Let $gcd(R_n, R_m) = d$.



      So $gcd(R_n,R_m) = gcd(frac10^n-19, frac 10^m-19) =frac 19gcd(10^n-1, 10^m - 1)$



      and



      $gcd(10^n-1, 10^m - 1)=gcd(10^n-1, (10^m-1)-(10^n-1)) $



      $= gcd(10^n-1, 10^m - 10^n) = $



      $gcd(10^n-1, 10^min(n,m)(10^max(n,m)-min(n,m) -1))$



      which, as $gcd(10^k, 10^n-1) = 1$ for all $k$, must be equal to $gcd(10^n-1, 10^v- 1)$ where $v=max(n,m)-min(n,m)$.



      And that's it, really...



      By induction we can replicate Euclid's algorithm to get $k*n + j*m = gcd(n,m)$ to show that $gcd(10^n-1, 10^m-1) = 10^gcd(n,m)-1$ and as $gcd(n,m) = 1$ then $gcd(10^n -1 , 10^m - 1) = 10^1 - 1 = 9$.



      And $gcd(R_n,R_m) = $



      $gcd(frac10^n-19, frac 10^m-19) = $



      $frac 19gcd(10^n-1, 10^m - 1)= 1$.






      share|cite|improve this answer





















        Your Answer




        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        convertImagesToLinks: true,
        noModals: false,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );








         

        draft saved


        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2866263%2flet-r-n-underbrace11-ldots1-n-prove-that-if-n-m-1-then-r-n%23new-answer', 'question_page');

        );

        Post as a guest






























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes








        up vote
        2
        down vote



        accepted










        1) Write $m=nk$ then $$10^m-1 =10^nk-1 = (10^n-1)Big((10^n)^k-1+...+10^n+1Big)$$
        so $$10^n-1mid 10^m-1implies R_nmid R_m$$



        Hint for 2):



        Use the fact that $$gcd(a^n-1,a^m-1)= a^gcd (m,n)-1$$






        share|cite|improve this answer

























          up vote
          2
          down vote



          accepted










          1) Write $m=nk$ then $$10^m-1 =10^nk-1 = (10^n-1)Big((10^n)^k-1+...+10^n+1Big)$$
          so $$10^n-1mid 10^m-1implies R_nmid R_m$$



          Hint for 2):



          Use the fact that $$gcd(a^n-1,a^m-1)= a^gcd (m,n)-1$$






          share|cite|improve this answer























            up vote
            2
            down vote



            accepted







            up vote
            2
            down vote



            accepted






            1) Write $m=nk$ then $$10^m-1 =10^nk-1 = (10^n-1)Big((10^n)^k-1+...+10^n+1Big)$$
            so $$10^n-1mid 10^m-1implies R_nmid R_m$$



            Hint for 2):



            Use the fact that $$gcd(a^n-1,a^m-1)= a^gcd (m,n)-1$$






            share|cite|improve this answer













            1) Write $m=nk$ then $$10^m-1 =10^nk-1 = (10^n-1)Big((10^n)^k-1+...+10^n+1Big)$$
            so $$10^n-1mid 10^m-1implies R_nmid R_m$$



            Hint for 2):



            Use the fact that $$gcd(a^n-1,a^m-1)= a^gcd (m,n)-1$$







            share|cite|improve this answer













            share|cite|improve this answer



            share|cite|improve this answer











            answered Jul 29 at 17:56









            greedoid

            26.1k93473




            26.1k93473




















                up vote
                1
                down vote













                Let $dmid m$ and $dmid n,$ so that $m=dj$ and $n=dk$ for some positive integers $j,k.$ Now, note that, for example, $$R_m=frac10^dj-19=fracleft(10^dright)^j-1^j9=frac10^d-19cdotsum_i=0^j-1left(10^dright)^i=R_dcdotsum_i=0^j-1left(10^dright)^i,$$ so that $R_dmid R_m,$ and likewise, $R_dmid R_n.$ (Incidentally, this is a more rigorous way to prove your first claim.) In particular, this holds true when $d=gcd(m,n).$ On the other hand, we can show that if $dmid R_m$ and $dmid R_n,$ then $dmid R_gcd(m,n),$ so that $$R_gcd(m,n)=gcdleft(R_m,R_nright).$$ What can we then conclude?






                share|cite|improve this answer

























                  up vote
                  1
                  down vote













                  Let $dmid m$ and $dmid n,$ so that $m=dj$ and $n=dk$ for some positive integers $j,k.$ Now, note that, for example, $$R_m=frac10^dj-19=fracleft(10^dright)^j-1^j9=frac10^d-19cdotsum_i=0^j-1left(10^dright)^i=R_dcdotsum_i=0^j-1left(10^dright)^i,$$ so that $R_dmid R_m,$ and likewise, $R_dmid R_n.$ (Incidentally, this is a more rigorous way to prove your first claim.) In particular, this holds true when $d=gcd(m,n).$ On the other hand, we can show that if $dmid R_m$ and $dmid R_n,$ then $dmid R_gcd(m,n),$ so that $$R_gcd(m,n)=gcdleft(R_m,R_nright).$$ What can we then conclude?






                  share|cite|improve this answer























                    up vote
                    1
                    down vote










                    up vote
                    1
                    down vote









                    Let $dmid m$ and $dmid n,$ so that $m=dj$ and $n=dk$ for some positive integers $j,k.$ Now, note that, for example, $$R_m=frac10^dj-19=fracleft(10^dright)^j-1^j9=frac10^d-19cdotsum_i=0^j-1left(10^dright)^i=R_dcdotsum_i=0^j-1left(10^dright)^i,$$ so that $R_dmid R_m,$ and likewise, $R_dmid R_n.$ (Incidentally, this is a more rigorous way to prove your first claim.) In particular, this holds true when $d=gcd(m,n).$ On the other hand, we can show that if $dmid R_m$ and $dmid R_n,$ then $dmid R_gcd(m,n),$ so that $$R_gcd(m,n)=gcdleft(R_m,R_nright).$$ What can we then conclude?






                    share|cite|improve this answer













                    Let $dmid m$ and $dmid n,$ so that $m=dj$ and $n=dk$ for some positive integers $j,k.$ Now, note that, for example, $$R_m=frac10^dj-19=fracleft(10^dright)^j-1^j9=frac10^d-19cdotsum_i=0^j-1left(10^dright)^i=R_dcdotsum_i=0^j-1left(10^dright)^i,$$ so that $R_dmid R_m,$ and likewise, $R_dmid R_n.$ (Incidentally, this is a more rigorous way to prove your first claim.) In particular, this holds true when $d=gcd(m,n).$ On the other hand, we can show that if $dmid R_m$ and $dmid R_n,$ then $dmid R_gcd(m,n),$ so that $$R_gcd(m,n)=gcdleft(R_m,R_nright).$$ What can we then conclude?







                    share|cite|improve this answer













                    share|cite|improve this answer



                    share|cite|improve this answer











                    answered Jul 29 at 18:04









                    Cameron Buie

                    83.5k771152




                    83.5k771152




















                        up vote
                        1
                        down vote













                        Let $gcd(R_n, R_m) = d$.



                        So $gcd(R_n,R_m) = gcd(frac10^n-19, frac 10^m-19) =frac 19gcd(10^n-1, 10^m - 1)$



                        and



                        $gcd(10^n-1, 10^m - 1)=gcd(10^n-1, (10^m-1)-(10^n-1)) $



                        $= gcd(10^n-1, 10^m - 10^n) = $



                        $gcd(10^n-1, 10^min(n,m)(10^max(n,m)-min(n,m) -1))$



                        which, as $gcd(10^k, 10^n-1) = 1$ for all $k$, must be equal to $gcd(10^n-1, 10^v- 1)$ where $v=max(n,m)-min(n,m)$.



                        And that's it, really...



                        By induction we can replicate Euclid's algorithm to get $k*n + j*m = gcd(n,m)$ to show that $gcd(10^n-1, 10^m-1) = 10^gcd(n,m)-1$ and as $gcd(n,m) = 1$ then $gcd(10^n -1 , 10^m - 1) = 10^1 - 1 = 9$.



                        And $gcd(R_n,R_m) = $



                        $gcd(frac10^n-19, frac 10^m-19) = $



                        $frac 19gcd(10^n-1, 10^m - 1)= 1$.






                        share|cite|improve this answer

























                          up vote
                          1
                          down vote













                          Let $gcd(R_n, R_m) = d$.



                          So $gcd(R_n,R_m) = gcd(frac10^n-19, frac 10^m-19) =frac 19gcd(10^n-1, 10^m - 1)$



                          and



                          $gcd(10^n-1, 10^m - 1)=gcd(10^n-1, (10^m-1)-(10^n-1)) $



                          $= gcd(10^n-1, 10^m - 10^n) = $



                          $gcd(10^n-1, 10^min(n,m)(10^max(n,m)-min(n,m) -1))$



                          which, as $gcd(10^k, 10^n-1) = 1$ for all $k$, must be equal to $gcd(10^n-1, 10^v- 1)$ where $v=max(n,m)-min(n,m)$.



                          And that's it, really...



                          By induction we can replicate Euclid's algorithm to get $k*n + j*m = gcd(n,m)$ to show that $gcd(10^n-1, 10^m-1) = 10^gcd(n,m)-1$ and as $gcd(n,m) = 1$ then $gcd(10^n -1 , 10^m - 1) = 10^1 - 1 = 9$.



                          And $gcd(R_n,R_m) = $



                          $gcd(frac10^n-19, frac 10^m-19) = $



                          $frac 19gcd(10^n-1, 10^m - 1)= 1$.






                          share|cite|improve this answer























                            up vote
                            1
                            down vote










                            up vote
                            1
                            down vote









                            Let $gcd(R_n, R_m) = d$.



                            So $gcd(R_n,R_m) = gcd(frac10^n-19, frac 10^m-19) =frac 19gcd(10^n-1, 10^m - 1)$



                            and



                            $gcd(10^n-1, 10^m - 1)=gcd(10^n-1, (10^m-1)-(10^n-1)) $



                            $= gcd(10^n-1, 10^m - 10^n) = $



                            $gcd(10^n-1, 10^min(n,m)(10^max(n,m)-min(n,m) -1))$



                            which, as $gcd(10^k, 10^n-1) = 1$ for all $k$, must be equal to $gcd(10^n-1, 10^v- 1)$ where $v=max(n,m)-min(n,m)$.



                            And that's it, really...



                            By induction we can replicate Euclid's algorithm to get $k*n + j*m = gcd(n,m)$ to show that $gcd(10^n-1, 10^m-1) = 10^gcd(n,m)-1$ and as $gcd(n,m) = 1$ then $gcd(10^n -1 , 10^m - 1) = 10^1 - 1 = 9$.



                            And $gcd(R_n,R_m) = $



                            $gcd(frac10^n-19, frac 10^m-19) = $



                            $frac 19gcd(10^n-1, 10^m - 1)= 1$.






                            share|cite|improve this answer













                            Let $gcd(R_n, R_m) = d$.



                            So $gcd(R_n,R_m) = gcd(frac10^n-19, frac 10^m-19) =frac 19gcd(10^n-1, 10^m - 1)$



                            and



                            $gcd(10^n-1, 10^m - 1)=gcd(10^n-1, (10^m-1)-(10^n-1)) $



                            $= gcd(10^n-1, 10^m - 10^n) = $



                            $gcd(10^n-1, 10^min(n,m)(10^max(n,m)-min(n,m) -1))$



                            which, as $gcd(10^k, 10^n-1) = 1$ for all $k$, must be equal to $gcd(10^n-1, 10^v- 1)$ where $v=max(n,m)-min(n,m)$.



                            And that's it, really...



                            By induction we can replicate Euclid's algorithm to get $k*n + j*m = gcd(n,m)$ to show that $gcd(10^n-1, 10^m-1) = 10^gcd(n,m)-1$ and as $gcd(n,m) = 1$ then $gcd(10^n -1 , 10^m - 1) = 10^1 - 1 = 9$.



                            And $gcd(R_n,R_m) = $



                            $gcd(frac10^n-19, frac 10^m-19) = $



                            $frac 19gcd(10^n-1, 10^m - 1)= 1$.







                            share|cite|improve this answer













                            share|cite|improve this answer



                            share|cite|improve this answer











                            answered Jul 29 at 18:13









                            fleablood

                            60.2k22575




                            60.2k22575






















                                 

                                draft saved


                                draft discarded


























                                 


                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2866263%2flet-r-n-underbrace11-ldots1-n-prove-that-if-n-m-1-then-r-n%23new-answer', 'question_page');

                                );

                                Post as a guest













































































                                Comments

                                Popular posts from this blog

                                What is the equation of a 3D cone with generalised tilt?

                                Color the edges and diagonals of a regular polygon

                                Relationship between determinant of matrix and determinant of adjoint?