Proving a limit for a fraction
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
Let $rin (0,1)$. How can I prove
$$lim_epsilonrightarrow 0frac(1+epsilon)^r+(1-epsilon)^r-2epsilon^2r=0?$$
limits
add a comment |Â
up vote
2
down vote
favorite
Let $rin (0,1)$. How can I prove
$$lim_epsilonrightarrow 0frac(1+epsilon)^r+(1-epsilon)^r-2epsilon^2r=0?$$
limits
Since you're taking a limit as $varepsilonto0$, you don't "choose" $varepsilon$.
– Clayton
Jul 19 at 16:01
You are right. I am sorry. I wanted to fix r, not epsilon.
– Dai Jinaid
Jul 19 at 16:03
Have you made any attempts on the problem?
– Clayton
Jul 19 at 16:03
Try l'Hopital's rule
– Green.H
Jul 19 at 16:03
2
Yes, l'Hopital doesn't help
– Dai Jinaid
Jul 19 at 16:10
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Let $rin (0,1)$. How can I prove
$$lim_epsilonrightarrow 0frac(1+epsilon)^r+(1-epsilon)^r-2epsilon^2r=0?$$
limits
Let $rin (0,1)$. How can I prove
$$lim_epsilonrightarrow 0frac(1+epsilon)^r+(1-epsilon)^r-2epsilon^2r=0?$$
limits
edited Jul 19 at 16:00
Clayton
17.9k22882
17.9k22882
asked Jul 19 at 15:59
Dai Jinaid
194
194
Since you're taking a limit as $varepsilonto0$, you don't "choose" $varepsilon$.
– Clayton
Jul 19 at 16:01
You are right. I am sorry. I wanted to fix r, not epsilon.
– Dai Jinaid
Jul 19 at 16:03
Have you made any attempts on the problem?
– Clayton
Jul 19 at 16:03
Try l'Hopital's rule
– Green.H
Jul 19 at 16:03
2
Yes, l'Hopital doesn't help
– Dai Jinaid
Jul 19 at 16:10
add a comment |Â
Since you're taking a limit as $varepsilonto0$, you don't "choose" $varepsilon$.
– Clayton
Jul 19 at 16:01
You are right. I am sorry. I wanted to fix r, not epsilon.
– Dai Jinaid
Jul 19 at 16:03
Have you made any attempts on the problem?
– Clayton
Jul 19 at 16:03
Try l'Hopital's rule
– Green.H
Jul 19 at 16:03
2
Yes, l'Hopital doesn't help
– Dai Jinaid
Jul 19 at 16:10
Since you're taking a limit as $varepsilonto0$, you don't "choose" $varepsilon$.
– Clayton
Jul 19 at 16:01
Since you're taking a limit as $varepsilonto0$, you don't "choose" $varepsilon$.
– Clayton
Jul 19 at 16:01
You are right. I am sorry. I wanted to fix r, not epsilon.
– Dai Jinaid
Jul 19 at 16:03
You are right. I am sorry. I wanted to fix r, not epsilon.
– Dai Jinaid
Jul 19 at 16:03
Have you made any attempts on the problem?
– Clayton
Jul 19 at 16:03
Have you made any attempts on the problem?
– Clayton
Jul 19 at 16:03
Try l'Hopital's rule
– Green.H
Jul 19 at 16:03
Try l'Hopital's rule
– Green.H
Jul 19 at 16:03
2
2
Yes, l'Hopital doesn't help
– Dai Jinaid
Jul 19 at 16:10
Yes, l'Hopital doesn't help
– Dai Jinaid
Jul 19 at 16:10
add a comment |Â
4 Answers
4
active
oldest
votes
up vote
1
down vote
By L'Hospital, twice,
$$frac(1+epsilon)^r+(1-epsilon)^r-2epsilon^2rtofrac(1+epsilon)^r-1-(1-epsilon)^r-12epsilon^2r-1tofracr-12r-1frac(1+epsilon)^r-2+(1-epsilon)^r-22epsilon^2r-2
\tofracr-12r-1epsilon^2-2rto0.$$
add a comment |Â
up vote
1
down vote
The numerator is a smooth, even function so that by Taylor it is
$$aepsilon^2+o(epsilon^2)$$
which decays faster than $epsilon^2r$.
(More precisely $a=r(r-1)$, but this is unimportant.)
add a comment |Â
up vote
0
down vote
With the definition of derivative:
beginalign
lim_epsilonrightarrow 0frac(1+epsilon)^r+(1-epsilon)^r-2epsilon^2r
&=left(lim_epsilonrightarrow 0frac(1+epsilon)^r-1epsilon + lim_epsilonrightarrow 0frac(1-epsilon)^r-1epsilonright)lim_epsilonrightarrow 0epsilon^1-2r\
&=left(((1+epsilon)^r)'Big|_epsilon=0 + ((1-epsilon)^r)'Big|_epsilon=0right)lim_epsilonrightarrow 0epsilon^1-2r\
&=2rtimes0\
&=0
endalign
only valid for $r<dfrac12$.
Shouldn't it be 1-2r instead of 2-2r?
– Dai Jinaid
Jul 19 at 16:20
Unfortunately yes!
– Nosrati
Jul 19 at 16:23
Apparently it is true for all r in (0,1)
– Dai Jinaid
Jul 19 at 16:23
add a comment |Â
up vote
0
down vote
Use series expansion at $x=0$
beginalign
(1+x)^r &= sum_k=0^infty x^kbinomrk\
(1+x)^r+(1-x)^r-2 & =sum_k=0^infty x^kbinomrk + sum_k=0^infty (-x)^kbinomrk -2 \
&=2sum_k=1^infty x^2kbinomr2k\
frac(1+x)^r+(1-x)^r-2x^2r&=2sum_k=1^infty x^2k-2rbinomr2k
endalign
Since $rin (0,1)$, $2rin (0,2)$ and $2k-2r >0$ $forall kgeq 1$ so
$$
lim_xto 0frac(1+x)^r+(1-x)^r-2x^2r = 0
$$
add a comment |Â
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
By L'Hospital, twice,
$$frac(1+epsilon)^r+(1-epsilon)^r-2epsilon^2rtofrac(1+epsilon)^r-1-(1-epsilon)^r-12epsilon^2r-1tofracr-12r-1frac(1+epsilon)^r-2+(1-epsilon)^r-22epsilon^2r-2
\tofracr-12r-1epsilon^2-2rto0.$$
add a comment |Â
up vote
1
down vote
By L'Hospital, twice,
$$frac(1+epsilon)^r+(1-epsilon)^r-2epsilon^2rtofrac(1+epsilon)^r-1-(1-epsilon)^r-12epsilon^2r-1tofracr-12r-1frac(1+epsilon)^r-2+(1-epsilon)^r-22epsilon^2r-2
\tofracr-12r-1epsilon^2-2rto0.$$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
By L'Hospital, twice,
$$frac(1+epsilon)^r+(1-epsilon)^r-2epsilon^2rtofrac(1+epsilon)^r-1-(1-epsilon)^r-12epsilon^2r-1tofracr-12r-1frac(1+epsilon)^r-2+(1-epsilon)^r-22epsilon^2r-2
\tofracr-12r-1epsilon^2-2rto0.$$
By L'Hospital, twice,
$$frac(1+epsilon)^r+(1-epsilon)^r-2epsilon^2rtofrac(1+epsilon)^r-1-(1-epsilon)^r-12epsilon^2r-1tofracr-12r-1frac(1+epsilon)^r-2+(1-epsilon)^r-22epsilon^2r-2
\tofracr-12r-1epsilon^2-2rto0.$$
edited Jul 19 at 16:32
answered Jul 19 at 16:27
Yves Daoust
111k665204
111k665204
add a comment |Â
add a comment |Â
up vote
1
down vote
The numerator is a smooth, even function so that by Taylor it is
$$aepsilon^2+o(epsilon^2)$$
which decays faster than $epsilon^2r$.
(More precisely $a=r(r-1)$, but this is unimportant.)
add a comment |Â
up vote
1
down vote
The numerator is a smooth, even function so that by Taylor it is
$$aepsilon^2+o(epsilon^2)$$
which decays faster than $epsilon^2r$.
(More precisely $a=r(r-1)$, but this is unimportant.)
add a comment |Â
up vote
1
down vote
up vote
1
down vote
The numerator is a smooth, even function so that by Taylor it is
$$aepsilon^2+o(epsilon^2)$$
which decays faster than $epsilon^2r$.
(More precisely $a=r(r-1)$, but this is unimportant.)
The numerator is a smooth, even function so that by Taylor it is
$$aepsilon^2+o(epsilon^2)$$
which decays faster than $epsilon^2r$.
(More precisely $a=r(r-1)$, but this is unimportant.)
edited Jul 19 at 16:49
answered Jul 19 at 16:40
Yves Daoust
111k665204
111k665204
add a comment |Â
add a comment |Â
up vote
0
down vote
With the definition of derivative:
beginalign
lim_epsilonrightarrow 0frac(1+epsilon)^r+(1-epsilon)^r-2epsilon^2r
&=left(lim_epsilonrightarrow 0frac(1+epsilon)^r-1epsilon + lim_epsilonrightarrow 0frac(1-epsilon)^r-1epsilonright)lim_epsilonrightarrow 0epsilon^1-2r\
&=left(((1+epsilon)^r)'Big|_epsilon=0 + ((1-epsilon)^r)'Big|_epsilon=0right)lim_epsilonrightarrow 0epsilon^1-2r\
&=2rtimes0\
&=0
endalign
only valid for $r<dfrac12$.
Shouldn't it be 1-2r instead of 2-2r?
– Dai Jinaid
Jul 19 at 16:20
Unfortunately yes!
– Nosrati
Jul 19 at 16:23
Apparently it is true for all r in (0,1)
– Dai Jinaid
Jul 19 at 16:23
add a comment |Â
up vote
0
down vote
With the definition of derivative:
beginalign
lim_epsilonrightarrow 0frac(1+epsilon)^r+(1-epsilon)^r-2epsilon^2r
&=left(lim_epsilonrightarrow 0frac(1+epsilon)^r-1epsilon + lim_epsilonrightarrow 0frac(1-epsilon)^r-1epsilonright)lim_epsilonrightarrow 0epsilon^1-2r\
&=left(((1+epsilon)^r)'Big|_epsilon=0 + ((1-epsilon)^r)'Big|_epsilon=0right)lim_epsilonrightarrow 0epsilon^1-2r\
&=2rtimes0\
&=0
endalign
only valid for $r<dfrac12$.
Shouldn't it be 1-2r instead of 2-2r?
– Dai Jinaid
Jul 19 at 16:20
Unfortunately yes!
– Nosrati
Jul 19 at 16:23
Apparently it is true for all r in (0,1)
– Dai Jinaid
Jul 19 at 16:23
add a comment |Â
up vote
0
down vote
up vote
0
down vote
With the definition of derivative:
beginalign
lim_epsilonrightarrow 0frac(1+epsilon)^r+(1-epsilon)^r-2epsilon^2r
&=left(lim_epsilonrightarrow 0frac(1+epsilon)^r-1epsilon + lim_epsilonrightarrow 0frac(1-epsilon)^r-1epsilonright)lim_epsilonrightarrow 0epsilon^1-2r\
&=left(((1+epsilon)^r)'Big|_epsilon=0 + ((1-epsilon)^r)'Big|_epsilon=0right)lim_epsilonrightarrow 0epsilon^1-2r\
&=2rtimes0\
&=0
endalign
only valid for $r<dfrac12$.
With the definition of derivative:
beginalign
lim_epsilonrightarrow 0frac(1+epsilon)^r+(1-epsilon)^r-2epsilon^2r
&=left(lim_epsilonrightarrow 0frac(1+epsilon)^r-1epsilon + lim_epsilonrightarrow 0frac(1-epsilon)^r-1epsilonright)lim_epsilonrightarrow 0epsilon^1-2r\
&=left(((1+epsilon)^r)'Big|_epsilon=0 + ((1-epsilon)^r)'Big|_epsilon=0right)lim_epsilonrightarrow 0epsilon^1-2r\
&=2rtimes0\
&=0
endalign
only valid for $r<dfrac12$.
edited Jul 19 at 16:20
answered Jul 19 at 16:16


Nosrati
19.6k41544
19.6k41544
Shouldn't it be 1-2r instead of 2-2r?
– Dai Jinaid
Jul 19 at 16:20
Unfortunately yes!
– Nosrati
Jul 19 at 16:23
Apparently it is true for all r in (0,1)
– Dai Jinaid
Jul 19 at 16:23
add a comment |Â
Shouldn't it be 1-2r instead of 2-2r?
– Dai Jinaid
Jul 19 at 16:20
Unfortunately yes!
– Nosrati
Jul 19 at 16:23
Apparently it is true for all r in (0,1)
– Dai Jinaid
Jul 19 at 16:23
Shouldn't it be 1-2r instead of 2-2r?
– Dai Jinaid
Jul 19 at 16:20
Shouldn't it be 1-2r instead of 2-2r?
– Dai Jinaid
Jul 19 at 16:20
Unfortunately yes!
– Nosrati
Jul 19 at 16:23
Unfortunately yes!
– Nosrati
Jul 19 at 16:23
Apparently it is true for all r in (0,1)
– Dai Jinaid
Jul 19 at 16:23
Apparently it is true for all r in (0,1)
– Dai Jinaid
Jul 19 at 16:23
add a comment |Â
up vote
0
down vote
Use series expansion at $x=0$
beginalign
(1+x)^r &= sum_k=0^infty x^kbinomrk\
(1+x)^r+(1-x)^r-2 & =sum_k=0^infty x^kbinomrk + sum_k=0^infty (-x)^kbinomrk -2 \
&=2sum_k=1^infty x^2kbinomr2k\
frac(1+x)^r+(1-x)^r-2x^2r&=2sum_k=1^infty x^2k-2rbinomr2k
endalign
Since $rin (0,1)$, $2rin (0,2)$ and $2k-2r >0$ $forall kgeq 1$ so
$$
lim_xto 0frac(1+x)^r+(1-x)^r-2x^2r = 0
$$
add a comment |Â
up vote
0
down vote
Use series expansion at $x=0$
beginalign
(1+x)^r &= sum_k=0^infty x^kbinomrk\
(1+x)^r+(1-x)^r-2 & =sum_k=0^infty x^kbinomrk + sum_k=0^infty (-x)^kbinomrk -2 \
&=2sum_k=1^infty x^2kbinomr2k\
frac(1+x)^r+(1-x)^r-2x^2r&=2sum_k=1^infty x^2k-2rbinomr2k
endalign
Since $rin (0,1)$, $2rin (0,2)$ and $2k-2r >0$ $forall kgeq 1$ so
$$
lim_xto 0frac(1+x)^r+(1-x)^r-2x^2r = 0
$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Use series expansion at $x=0$
beginalign
(1+x)^r &= sum_k=0^infty x^kbinomrk\
(1+x)^r+(1-x)^r-2 & =sum_k=0^infty x^kbinomrk + sum_k=0^infty (-x)^kbinomrk -2 \
&=2sum_k=1^infty x^2kbinomr2k\
frac(1+x)^r+(1-x)^r-2x^2r&=2sum_k=1^infty x^2k-2rbinomr2k
endalign
Since $rin (0,1)$, $2rin (0,2)$ and $2k-2r >0$ $forall kgeq 1$ so
$$
lim_xto 0frac(1+x)^r+(1-x)^r-2x^2r = 0
$$
Use series expansion at $x=0$
beginalign
(1+x)^r &= sum_k=0^infty x^kbinomrk\
(1+x)^r+(1-x)^r-2 & =sum_k=0^infty x^kbinomrk + sum_k=0^infty (-x)^kbinomrk -2 \
&=2sum_k=1^infty x^2kbinomr2k\
frac(1+x)^r+(1-x)^r-2x^2r&=2sum_k=1^infty x^2k-2rbinomr2k
endalign
Since $rin (0,1)$, $2rin (0,2)$ and $2k-2r >0$ $forall kgeq 1$ so
$$
lim_xto 0frac(1+x)^r+(1-x)^r-2x^2r = 0
$$
answered Jul 19 at 16:23
Rafael Gonzalez Lopez
652112
652112
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2856777%2fproving-a-limit-for-a-fraction%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Since you're taking a limit as $varepsilonto0$, you don't "choose" $varepsilon$.
– Clayton
Jul 19 at 16:01
You are right. I am sorry. I wanted to fix r, not epsilon.
– Dai Jinaid
Jul 19 at 16:03
Have you made any attempts on the problem?
– Clayton
Jul 19 at 16:03
Try l'Hopital's rule
– Green.H
Jul 19 at 16:03
2
Yes, l'Hopital doesn't help
– Dai Jinaid
Jul 19 at 16:10