Random Variable X and Y has a joint probability density function.

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Random Variable X and Y has a joint probability density function.



$$f_X, Y (x, y) =begincases
cxy& 0 leq x leq y, 0 leq y leq5\
0 & textotherwise \
endcases
$$



(a) Find $f_ X(y | x)$



(b) $P(Y leq 4 | X = 3)$




$(a)$



$$f_X(x) = int_0^5 cxy dy = cx/2(y^2)bigg|_0^5 = fraccx252$$ with support $0 leq x leq y$



$$f_ X(y | x) = fraccxycx25/2 = frac2y25$$



$(b)$



$$f_Y, X(y | X=3) = frac2y25$$



$$int_0^4 f_Y, X(y | X=3) dy = int_0^4 frac2y25 dy = frac250left(y^2 right)bigg|_0^4 = frac1625$$



Apparently, this is wrong, why so?







share|cite|improve this question























    up vote
    0
    down vote

    favorite












    Random Variable X and Y has a joint probability density function.



    $$f_X, Y (x, y) =begincases
    cxy& 0 leq x leq y, 0 leq y leq5\
    0 & textotherwise \
    endcases
    $$



    (a) Find $f_ X(y | x)$



    (b) $P(Y leq 4 | X = 3)$




    $(a)$



    $$f_X(x) = int_0^5 cxy dy = cx/2(y^2)bigg|_0^5 = fraccx252$$ with support $0 leq x leq y$



    $$f_ X(y | x) = fraccxycx25/2 = frac2y25$$



    $(b)$



    $$f_Y, X(y | X=3) = frac2y25$$



    $$int_0^4 f_Y, X(y | X=3) dy = int_0^4 frac2y25 dy = frac250left(y^2 right)bigg|_0^4 = frac1625$$



    Apparently, this is wrong, why so?







    share|cite|improve this question





















      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Random Variable X and Y has a joint probability density function.



      $$f_X, Y (x, y) =begincases
      cxy& 0 leq x leq y, 0 leq y leq5\
      0 & textotherwise \
      endcases
      $$



      (a) Find $f_ X(y | x)$



      (b) $P(Y leq 4 | X = 3)$




      $(a)$



      $$f_X(x) = int_0^5 cxy dy = cx/2(y^2)bigg|_0^5 = fraccx252$$ with support $0 leq x leq y$



      $$f_ X(y | x) = fraccxycx25/2 = frac2y25$$



      $(b)$



      $$f_Y, X(y | X=3) = frac2y25$$



      $$int_0^4 f_Y, X(y | X=3) dy = int_0^4 frac2y25 dy = frac250left(y^2 right)bigg|_0^4 = frac1625$$



      Apparently, this is wrong, why so?







      share|cite|improve this question











      Random Variable X and Y has a joint probability density function.



      $$f_X, Y (x, y) =begincases
      cxy& 0 leq x leq y, 0 leq y leq5\
      0 & textotherwise \
      endcases
      $$



      (a) Find $f_ X(y | x)$



      (b) $P(Y leq 4 | X = 3)$




      $(a)$



      $$f_X(x) = int_0^5 cxy dy = cx/2(y^2)bigg|_0^5 = fraccx252$$ with support $0 leq x leq y$



      $$f_ X(y | x) = fraccxycx25/2 = frac2y25$$



      $(b)$



      $$f_Y, X(y | X=3) = frac2y25$$



      $$int_0^4 f_Y, X(y | X=3) dy = int_0^4 frac2y25 dy = frac250left(y^2 right)bigg|_0^4 = frac1625$$



      Apparently, this is wrong, why so?









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked Jul 19 at 22:34









      Bas bas

      39611




      39611




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          The pdf only has support for $y>x,$ so actually $$ f_X(x) = int_x^5cxy;dy.$$






          share|cite|improve this answer





















          • Also do the same for (b). @Basbas
            – Graham Kemp
            Jul 19 at 22:51










          • so, x to 4 for b?
            – Bas bas
            Jul 19 at 22:55










          • @Basbas No. What is the support of $f(ymid X=3)?$
            – spaceisdarkgreen
            Jul 19 at 22:59










          • Oh. So, 3 to 4.
            – Bas bas
            Jul 19 at 23:02










          • @Basbas yes, the support of $f(ymid x)$ is $(x,5).$
            – spaceisdarkgreen
            Jul 19 at 23:09











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2857100%2frandom-variable-x-and-y-has-a-joint-probability-density-function%23new-answer', 'question_page');

          );

          Post as a guest






























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          1
          down vote



          accepted










          The pdf only has support for $y>x,$ so actually $$ f_X(x) = int_x^5cxy;dy.$$






          share|cite|improve this answer





















          • Also do the same for (b). @Basbas
            – Graham Kemp
            Jul 19 at 22:51










          • so, x to 4 for b?
            – Bas bas
            Jul 19 at 22:55










          • @Basbas No. What is the support of $f(ymid X=3)?$
            – spaceisdarkgreen
            Jul 19 at 22:59










          • Oh. So, 3 to 4.
            – Bas bas
            Jul 19 at 23:02










          • @Basbas yes, the support of $f(ymid x)$ is $(x,5).$
            – spaceisdarkgreen
            Jul 19 at 23:09















          up vote
          1
          down vote



          accepted










          The pdf only has support for $y>x,$ so actually $$ f_X(x) = int_x^5cxy;dy.$$






          share|cite|improve this answer





















          • Also do the same for (b). @Basbas
            – Graham Kemp
            Jul 19 at 22:51










          • so, x to 4 for b?
            – Bas bas
            Jul 19 at 22:55










          • @Basbas No. What is the support of $f(ymid X=3)?$
            – spaceisdarkgreen
            Jul 19 at 22:59










          • Oh. So, 3 to 4.
            – Bas bas
            Jul 19 at 23:02










          • @Basbas yes, the support of $f(ymid x)$ is $(x,5).$
            – spaceisdarkgreen
            Jul 19 at 23:09













          up vote
          1
          down vote



          accepted







          up vote
          1
          down vote



          accepted






          The pdf only has support for $y>x,$ so actually $$ f_X(x) = int_x^5cxy;dy.$$






          share|cite|improve this answer













          The pdf only has support for $y>x,$ so actually $$ f_X(x) = int_x^5cxy;dy.$$







          share|cite|improve this answer













          share|cite|improve this answer



          share|cite|improve this answer











          answered Jul 19 at 22:46









          spaceisdarkgreen

          27.5k21547




          27.5k21547











          • Also do the same for (b). @Basbas
            – Graham Kemp
            Jul 19 at 22:51










          • so, x to 4 for b?
            – Bas bas
            Jul 19 at 22:55










          • @Basbas No. What is the support of $f(ymid X=3)?$
            – spaceisdarkgreen
            Jul 19 at 22:59










          • Oh. So, 3 to 4.
            – Bas bas
            Jul 19 at 23:02










          • @Basbas yes, the support of $f(ymid x)$ is $(x,5).$
            – spaceisdarkgreen
            Jul 19 at 23:09

















          • Also do the same for (b). @Basbas
            – Graham Kemp
            Jul 19 at 22:51










          • so, x to 4 for b?
            – Bas bas
            Jul 19 at 22:55










          • @Basbas No. What is the support of $f(ymid X=3)?$
            – spaceisdarkgreen
            Jul 19 at 22:59










          • Oh. So, 3 to 4.
            – Bas bas
            Jul 19 at 23:02










          • @Basbas yes, the support of $f(ymid x)$ is $(x,5).$
            – spaceisdarkgreen
            Jul 19 at 23:09
















          Also do the same for (b). @Basbas
          – Graham Kemp
          Jul 19 at 22:51




          Also do the same for (b). @Basbas
          – Graham Kemp
          Jul 19 at 22:51












          so, x to 4 for b?
          – Bas bas
          Jul 19 at 22:55




          so, x to 4 for b?
          – Bas bas
          Jul 19 at 22:55












          @Basbas No. What is the support of $f(ymid X=3)?$
          – spaceisdarkgreen
          Jul 19 at 22:59




          @Basbas No. What is the support of $f(ymid X=3)?$
          – spaceisdarkgreen
          Jul 19 at 22:59












          Oh. So, 3 to 4.
          – Bas bas
          Jul 19 at 23:02




          Oh. So, 3 to 4.
          – Bas bas
          Jul 19 at 23:02












          @Basbas yes, the support of $f(ymid x)$ is $(x,5).$
          – spaceisdarkgreen
          Jul 19 at 23:09





          @Basbas yes, the support of $f(ymid x)$ is $(x,5).$
          – spaceisdarkgreen
          Jul 19 at 23:09













           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2857100%2frandom-variable-x-and-y-has-a-joint-probability-density-function%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What is the equation of a 3D cone with generalised tilt?

          Color the edges and diagonals of a regular polygon

          Relationship between determinant of matrix and determinant of adjoint?