Random Variable X and Y has a joint probability density function.
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Random Variable X and Y has a joint probability density function.
$$f_X, Y (x, y) =begincases
cxy& 0 leq x leq y, 0 leq y leq5\
0 & textotherwise \
endcases
$$
(a) Find $f_ X(y | x)$
(b) $P(Y leq 4 | X = 3)$
$(a)$
$$f_X(x) = int_0^5 cxy dy = cx/2(y^2)bigg|_0^5 = fraccx252$$ with support $0 leq x leq y$
$$f_ X(y | x) = fraccxycx25/2 = frac2y25$$
$(b)$
$$f_Y, X(y | X=3) = frac2y25$$
$$int_0^4 f_Y, X(y | X=3) dy = int_0^4 frac2y25 dy = frac250left(y^2 right)bigg|_0^4 = frac1625$$
Apparently, this is wrong, why so?
probability probability-distributions
add a comment |Â
up vote
0
down vote
favorite
Random Variable X and Y has a joint probability density function.
$$f_X, Y (x, y) =begincases
cxy& 0 leq x leq y, 0 leq y leq5\
0 & textotherwise \
endcases
$$
(a) Find $f_ X(y | x)$
(b) $P(Y leq 4 | X = 3)$
$(a)$
$$f_X(x) = int_0^5 cxy dy = cx/2(y^2)bigg|_0^5 = fraccx252$$ with support $0 leq x leq y$
$$f_ X(y | x) = fraccxycx25/2 = frac2y25$$
$(b)$
$$f_Y, X(y | X=3) = frac2y25$$
$$int_0^4 f_Y, X(y | X=3) dy = int_0^4 frac2y25 dy = frac250left(y^2 right)bigg|_0^4 = frac1625$$
Apparently, this is wrong, why so?
probability probability-distributions
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Random Variable X and Y has a joint probability density function.
$$f_X, Y (x, y) =begincases
cxy& 0 leq x leq y, 0 leq y leq5\
0 & textotherwise \
endcases
$$
(a) Find $f_ X(y | x)$
(b) $P(Y leq 4 | X = 3)$
$(a)$
$$f_X(x) = int_0^5 cxy dy = cx/2(y^2)bigg|_0^5 = fraccx252$$ with support $0 leq x leq y$
$$f_ X(y | x) = fraccxycx25/2 = frac2y25$$
$(b)$
$$f_Y, X(y | X=3) = frac2y25$$
$$int_0^4 f_Y, X(y | X=3) dy = int_0^4 frac2y25 dy = frac250left(y^2 right)bigg|_0^4 = frac1625$$
Apparently, this is wrong, why so?
probability probability-distributions
Random Variable X and Y has a joint probability density function.
$$f_X, Y (x, y) =begincases
cxy& 0 leq x leq y, 0 leq y leq5\
0 & textotherwise \
endcases
$$
(a) Find $f_ X(y | x)$
(b) $P(Y leq 4 | X = 3)$
$(a)$
$$f_X(x) = int_0^5 cxy dy = cx/2(y^2)bigg|_0^5 = fraccx252$$ with support $0 leq x leq y$
$$f_ X(y | x) = fraccxycx25/2 = frac2y25$$
$(b)$
$$f_Y, X(y | X=3) = frac2y25$$
$$int_0^4 f_Y, X(y | X=3) dy = int_0^4 frac2y25 dy = frac250left(y^2 right)bigg|_0^4 = frac1625$$
Apparently, this is wrong, why so?
probability probability-distributions
asked Jul 19 at 22:34
Bas bas
39611
39611
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
The pdf only has support for $y>x,$ so actually $$ f_X(x) = int_x^5cxy;dy.$$
Also do the same for (b). @Basbas
– Graham Kemp
Jul 19 at 22:51
so, x to 4 for b?
– Bas bas
Jul 19 at 22:55
@Basbas No. What is the support of $f(ymid X=3)?$
– spaceisdarkgreen
Jul 19 at 22:59
Oh. So, 3 to 4.
– Bas bas
Jul 19 at 23:02
@Basbas yes, the support of $f(ymid x)$ is $(x,5).$
– spaceisdarkgreen
Jul 19 at 23:09
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
The pdf only has support for $y>x,$ so actually $$ f_X(x) = int_x^5cxy;dy.$$
Also do the same for (b). @Basbas
– Graham Kemp
Jul 19 at 22:51
so, x to 4 for b?
– Bas bas
Jul 19 at 22:55
@Basbas No. What is the support of $f(ymid X=3)?$
– spaceisdarkgreen
Jul 19 at 22:59
Oh. So, 3 to 4.
– Bas bas
Jul 19 at 23:02
@Basbas yes, the support of $f(ymid x)$ is $(x,5).$
– spaceisdarkgreen
Jul 19 at 23:09
add a comment |Â
up vote
1
down vote
accepted
The pdf only has support for $y>x,$ so actually $$ f_X(x) = int_x^5cxy;dy.$$
Also do the same for (b). @Basbas
– Graham Kemp
Jul 19 at 22:51
so, x to 4 for b?
– Bas bas
Jul 19 at 22:55
@Basbas No. What is the support of $f(ymid X=3)?$
– spaceisdarkgreen
Jul 19 at 22:59
Oh. So, 3 to 4.
– Bas bas
Jul 19 at 23:02
@Basbas yes, the support of $f(ymid x)$ is $(x,5).$
– spaceisdarkgreen
Jul 19 at 23:09
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
The pdf only has support for $y>x,$ so actually $$ f_X(x) = int_x^5cxy;dy.$$
The pdf only has support for $y>x,$ so actually $$ f_X(x) = int_x^5cxy;dy.$$
answered Jul 19 at 22:46
spaceisdarkgreen
27.5k21547
27.5k21547
Also do the same for (b). @Basbas
– Graham Kemp
Jul 19 at 22:51
so, x to 4 for b?
– Bas bas
Jul 19 at 22:55
@Basbas No. What is the support of $f(ymid X=3)?$
– spaceisdarkgreen
Jul 19 at 22:59
Oh. So, 3 to 4.
– Bas bas
Jul 19 at 23:02
@Basbas yes, the support of $f(ymid x)$ is $(x,5).$
– spaceisdarkgreen
Jul 19 at 23:09
add a comment |Â
Also do the same for (b). @Basbas
– Graham Kemp
Jul 19 at 22:51
so, x to 4 for b?
– Bas bas
Jul 19 at 22:55
@Basbas No. What is the support of $f(ymid X=3)?$
– spaceisdarkgreen
Jul 19 at 22:59
Oh. So, 3 to 4.
– Bas bas
Jul 19 at 23:02
@Basbas yes, the support of $f(ymid x)$ is $(x,5).$
– spaceisdarkgreen
Jul 19 at 23:09
Also do the same for (b). @Basbas
– Graham Kemp
Jul 19 at 22:51
Also do the same for (b). @Basbas
– Graham Kemp
Jul 19 at 22:51
so, x to 4 for b?
– Bas bas
Jul 19 at 22:55
so, x to 4 for b?
– Bas bas
Jul 19 at 22:55
@Basbas No. What is the support of $f(ymid X=3)?$
– spaceisdarkgreen
Jul 19 at 22:59
@Basbas No. What is the support of $f(ymid X=3)?$
– spaceisdarkgreen
Jul 19 at 22:59
Oh. So, 3 to 4.
– Bas bas
Jul 19 at 23:02
Oh. So, 3 to 4.
– Bas bas
Jul 19 at 23:02
@Basbas yes, the support of $f(ymid x)$ is $(x,5).$
– spaceisdarkgreen
Jul 19 at 23:09
@Basbas yes, the support of $f(ymid x)$ is $(x,5).$
– spaceisdarkgreen
Jul 19 at 23:09
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2857100%2frandom-variable-x-and-y-has-a-joint-probability-density-function%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password