Random Variable X and Y has a joint probability density function. Find $f_ Y(x | y)$
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
Random Variable X and Y has a joint probability density function.
$$f_X, Y (x, y) =begincases
c(x + 3y)& 5 leq x leq y, 6 leq y leq10\
0 & textotherwise \
endcases
$$
(a) Find $f_X (x | y)$
(b) $P(x leq 5 | Y = 9)$
My attempt:
$f_X (x | y) = fracf_X, Y(x, y)f_Y(y)$
$$f_Y(y) = cint_5^y(x+3y)dx = c/2 (-25 - 30 y + 7 y^2)$$
for $f_Y(y)$ has support $6 leq y leq 10$, 0 otherwise
$$f_X (x | y) = frac0.5c(x+3y)(-25 - 30 y + 7 y^2)$$
$f_X (x | y)$ has support the same as the joint probability function
(b)
$f_X (x | y = 9) = fracx+27272$
$$P(x leq 5 | Y = 9) = int_5^? f_X (x | y = 9)dx = $$
Not sure
probability
add a comment |Â
up vote
1
down vote
favorite
Random Variable X and Y has a joint probability density function.
$$f_X, Y (x, y) =begincases
c(x + 3y)& 5 leq x leq y, 6 leq y leq10\
0 & textotherwise \
endcases
$$
(a) Find $f_X (x | y)$
(b) $P(x leq 5 | Y = 9)$
My attempt:
$f_X (x | y) = fracf_X, Y(x, y)f_Y(y)$
$$f_Y(y) = cint_5^y(x+3y)dx = c/2 (-25 - 30 y + 7 y^2)$$
for $f_Y(y)$ has support $6 leq y leq 10$, 0 otherwise
$$f_X (x | y) = frac0.5c(x+3y)(-25 - 30 y + 7 y^2)$$
$f_X (x | y)$ has support the same as the joint probability function
(b)
$f_X (x | y = 9) = fracx+27272$
$$P(x leq 5 | Y = 9) = int_5^? f_X (x | y = 9)dx = $$
Not sure
probability
1
Replace $?$ by $5$ and the answer is $0$.
– Piyush Divyanakar
Jul 19 at 10:15
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Random Variable X and Y has a joint probability density function.
$$f_X, Y (x, y) =begincases
c(x + 3y)& 5 leq x leq y, 6 leq y leq10\
0 & textotherwise \
endcases
$$
(a) Find $f_X (x | y)$
(b) $P(x leq 5 | Y = 9)$
My attempt:
$f_X (x | y) = fracf_X, Y(x, y)f_Y(y)$
$$f_Y(y) = cint_5^y(x+3y)dx = c/2 (-25 - 30 y + 7 y^2)$$
for $f_Y(y)$ has support $6 leq y leq 10$, 0 otherwise
$$f_X (x | y) = frac0.5c(x+3y)(-25 - 30 y + 7 y^2)$$
$f_X (x | y)$ has support the same as the joint probability function
(b)
$f_X (x | y = 9) = fracx+27272$
$$P(x leq 5 | Y = 9) = int_5^? f_X (x | y = 9)dx = $$
Not sure
probability
Random Variable X and Y has a joint probability density function.
$$f_X, Y (x, y) =begincases
c(x + 3y)& 5 leq x leq y, 6 leq y leq10\
0 & textotherwise \
endcases
$$
(a) Find $f_X (x | y)$
(b) $P(x leq 5 | Y = 9)$
My attempt:
$f_X (x | y) = fracf_X, Y(x, y)f_Y(y)$
$$f_Y(y) = cint_5^y(x+3y)dx = c/2 (-25 - 30 y + 7 y^2)$$
for $f_Y(y)$ has support $6 leq y leq 10$, 0 otherwise
$$f_X (x | y) = frac0.5c(x+3y)(-25 - 30 y + 7 y^2)$$
$f_X (x | y)$ has support the same as the joint probability function
(b)
$f_X (x | y = 9) = fracx+27272$
$$P(x leq 5 | Y = 9) = int_5^? f_X (x | y = 9)dx = $$
Not sure
probability
asked Jul 19 at 7:39
Bas bas
39611
39611
1
Replace $?$ by $5$ and the answer is $0$.
– Piyush Divyanakar
Jul 19 at 10:15
add a comment |Â
1
Replace $?$ by $5$ and the answer is $0$.
– Piyush Divyanakar
Jul 19 at 10:15
1
1
Replace $?$ by $5$ and the answer is $0$.
– Piyush Divyanakar
Jul 19 at 10:15
Replace $?$ by $5$ and the answer is $0$.
– Piyush Divyanakar
Jul 19 at 10:15
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
0
down vote
accepted
(a) Everything is done okay, save that the final answer should be $$f_Xmid Y(xmid y)=dfrac2(x+3y)7y^2-30y-25mathbf 1_5leqslant xleqslant y, 6leqslant yleqslant 10$$
(b) Whatever value of $Y$, the support for $X$ indicates that it is impossible to have $Xleqslant 5$. $$mathsf P(Xleqslant5mid Y=9)=0$$
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
(a) Everything is done okay, save that the final answer should be $$f_Xmid Y(xmid y)=dfrac2(x+3y)7y^2-30y-25mathbf 1_5leqslant xleqslant y, 6leqslant yleqslant 10$$
(b) Whatever value of $Y$, the support for $X$ indicates that it is impossible to have $Xleqslant 5$. $$mathsf P(Xleqslant5mid Y=9)=0$$
add a comment |Â
up vote
0
down vote
accepted
(a) Everything is done okay, save that the final answer should be $$f_Xmid Y(xmid y)=dfrac2(x+3y)7y^2-30y-25mathbf 1_5leqslant xleqslant y, 6leqslant yleqslant 10$$
(b) Whatever value of $Y$, the support for $X$ indicates that it is impossible to have $Xleqslant 5$. $$mathsf P(Xleqslant5mid Y=9)=0$$
add a comment |Â
up vote
0
down vote
accepted
up vote
0
down vote
accepted
(a) Everything is done okay, save that the final answer should be $$f_Xmid Y(xmid y)=dfrac2(x+3y)7y^2-30y-25mathbf 1_5leqslant xleqslant y, 6leqslant yleqslant 10$$
(b) Whatever value of $Y$, the support for $X$ indicates that it is impossible to have $Xleqslant 5$. $$mathsf P(Xleqslant5mid Y=9)=0$$
(a) Everything is done okay, save that the final answer should be $$f_Xmid Y(xmid y)=dfrac2(x+3y)7y^2-30y-25mathbf 1_5leqslant xleqslant y, 6leqslant yleqslant 10$$
(b) Whatever value of $Y$, the support for $X$ indicates that it is impossible to have $Xleqslant 5$. $$mathsf P(Xleqslant5mid Y=9)=0$$
answered Jul 19 at 10:46
community wiki
Graham Kemp
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2856368%2frandom-variable-x-and-y-has-a-joint-probability-density-function-find-f-x-y%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
1
Replace $?$ by $5$ and the answer is $0$.
– Piyush Divyanakar
Jul 19 at 10:15