Random Variable X and Y has a joint probability density function. Find $f_ Y(x | y)$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












Random Variable X and Y has a joint probability density function.



$$f_X, Y (x, y) =begincases
c(x + 3y)& 5 leq x leq y, 6 leq y leq10\
0 & textotherwise \
endcases
$$



(a) Find $f_X (x | y)$



(b) $P(x leq 5 | Y = 9)$




My attempt:



$f_X (x | y) = fracf_X, Y(x, y)f_Y(y)$



$$f_Y(y) = cint_5^y(x+3y)dx = c/2 (-25 - 30 y + 7 y^2)$$



for $f_Y(y)$ has support $6 leq y leq 10$, 0 otherwise



$$f_X (x | y) = frac0.5c(x+3y)(-25 - 30 y + 7 y^2)$$



$f_X (x | y)$ has support the same as the joint probability function



(b)



$f_X (x | y = 9) = fracx+27272$



$$P(x leq 5 | Y = 9) = int_5^? f_X (x | y = 9)dx = $$



Not sure







share|cite|improve this question















  • 1




    Replace $?$ by $5$ and the answer is $0$.
    – Piyush Divyanakar
    Jul 19 at 10:15














up vote
1
down vote

favorite












Random Variable X and Y has a joint probability density function.



$$f_X, Y (x, y) =begincases
c(x + 3y)& 5 leq x leq y, 6 leq y leq10\
0 & textotherwise \
endcases
$$



(a) Find $f_X (x | y)$



(b) $P(x leq 5 | Y = 9)$




My attempt:



$f_X (x | y) = fracf_X, Y(x, y)f_Y(y)$



$$f_Y(y) = cint_5^y(x+3y)dx = c/2 (-25 - 30 y + 7 y^2)$$



for $f_Y(y)$ has support $6 leq y leq 10$, 0 otherwise



$$f_X (x | y) = frac0.5c(x+3y)(-25 - 30 y + 7 y^2)$$



$f_X (x | y)$ has support the same as the joint probability function



(b)



$f_X (x | y = 9) = fracx+27272$



$$P(x leq 5 | Y = 9) = int_5^? f_X (x | y = 9)dx = $$



Not sure







share|cite|improve this question















  • 1




    Replace $?$ by $5$ and the answer is $0$.
    – Piyush Divyanakar
    Jul 19 at 10:15












up vote
1
down vote

favorite









up vote
1
down vote

favorite











Random Variable X and Y has a joint probability density function.



$$f_X, Y (x, y) =begincases
c(x + 3y)& 5 leq x leq y, 6 leq y leq10\
0 & textotherwise \
endcases
$$



(a) Find $f_X (x | y)$



(b) $P(x leq 5 | Y = 9)$




My attempt:



$f_X (x | y) = fracf_X, Y(x, y)f_Y(y)$



$$f_Y(y) = cint_5^y(x+3y)dx = c/2 (-25 - 30 y + 7 y^2)$$



for $f_Y(y)$ has support $6 leq y leq 10$, 0 otherwise



$$f_X (x | y) = frac0.5c(x+3y)(-25 - 30 y + 7 y^2)$$



$f_X (x | y)$ has support the same as the joint probability function



(b)



$f_X (x | y = 9) = fracx+27272$



$$P(x leq 5 | Y = 9) = int_5^? f_X (x | y = 9)dx = $$



Not sure







share|cite|improve this question











Random Variable X and Y has a joint probability density function.



$$f_X, Y (x, y) =begincases
c(x + 3y)& 5 leq x leq y, 6 leq y leq10\
0 & textotherwise \
endcases
$$



(a) Find $f_X (x | y)$



(b) $P(x leq 5 | Y = 9)$




My attempt:



$f_X (x | y) = fracf_X, Y(x, y)f_Y(y)$



$$f_Y(y) = cint_5^y(x+3y)dx = c/2 (-25 - 30 y + 7 y^2)$$



for $f_Y(y)$ has support $6 leq y leq 10$, 0 otherwise



$$f_X (x | y) = frac0.5c(x+3y)(-25 - 30 y + 7 y^2)$$



$f_X (x | y)$ has support the same as the joint probability function



(b)



$f_X (x | y = 9) = fracx+27272$



$$P(x leq 5 | Y = 9) = int_5^? f_X (x | y = 9)dx = $$



Not sure









share|cite|improve this question










share|cite|improve this question




share|cite|improve this question









asked Jul 19 at 7:39









Bas bas

39611




39611







  • 1




    Replace $?$ by $5$ and the answer is $0$.
    – Piyush Divyanakar
    Jul 19 at 10:15












  • 1




    Replace $?$ by $5$ and the answer is $0$.
    – Piyush Divyanakar
    Jul 19 at 10:15







1




1




Replace $?$ by $5$ and the answer is $0$.
– Piyush Divyanakar
Jul 19 at 10:15




Replace $?$ by $5$ and the answer is $0$.
– Piyush Divyanakar
Jul 19 at 10:15










1 Answer
1






active

oldest

votes

















up vote
0
down vote



accepted










(a) Everything is done okay, save that the final answer should be $$f_Xmid Y(xmid y)=dfrac2(x+3y)7y^2-30y-25mathbf 1_5leqslant xleqslant y, 6leqslant yleqslant 10$$




(b) Whatever value of $Y$, the support for $X$ indicates that it is impossible to have $Xleqslant 5$. $$mathsf P(Xleqslant5mid Y=9)=0$$






share|cite|improve this answer























    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2856368%2frandom-variable-x-and-y-has-a-joint-probability-density-function-find-f-x-y%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote



    accepted










    (a) Everything is done okay, save that the final answer should be $$f_Xmid Y(xmid y)=dfrac2(x+3y)7y^2-30y-25mathbf 1_5leqslant xleqslant y, 6leqslant yleqslant 10$$




    (b) Whatever value of $Y$, the support for $X$ indicates that it is impossible to have $Xleqslant 5$. $$mathsf P(Xleqslant5mid Y=9)=0$$






    share|cite|improve this answer



























      up vote
      0
      down vote



      accepted










      (a) Everything is done okay, save that the final answer should be $$f_Xmid Y(xmid y)=dfrac2(x+3y)7y^2-30y-25mathbf 1_5leqslant xleqslant y, 6leqslant yleqslant 10$$




      (b) Whatever value of $Y$, the support for $X$ indicates that it is impossible to have $Xleqslant 5$. $$mathsf P(Xleqslant5mid Y=9)=0$$






      share|cite|improve this answer

























        up vote
        0
        down vote



        accepted







        up vote
        0
        down vote



        accepted






        (a) Everything is done okay, save that the final answer should be $$f_Xmid Y(xmid y)=dfrac2(x+3y)7y^2-30y-25mathbf 1_5leqslant xleqslant y, 6leqslant yleqslant 10$$




        (b) Whatever value of $Y$, the support for $X$ indicates that it is impossible to have $Xleqslant 5$. $$mathsf P(Xleqslant5mid Y=9)=0$$






        share|cite|improve this answer















        (a) Everything is done okay, save that the final answer should be $$f_Xmid Y(xmid y)=dfrac2(x+3y)7y^2-30y-25mathbf 1_5leqslant xleqslant y, 6leqslant yleqslant 10$$




        (b) Whatever value of $Y$, the support for $X$ indicates that it is impossible to have $Xleqslant 5$. $$mathsf P(Xleqslant5mid Y=9)=0$$







        share|cite|improve this answer















        share|cite|improve this answer



        share|cite|improve this answer








        answered Jul 19 at 10:46



























        community wiki





        Graham Kemp























             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2856368%2frandom-variable-x-and-y-has-a-joint-probability-density-function-find-f-x-y%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What is the equation of a 3D cone with generalised tilt?

            Color the edges and diagonals of a regular polygon

            Relationship between determinant of matrix and determinant of adjoint?