Sequences and Sums

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
4
down vote

favorite












There is a list of numbers $a_1 , a_2 , …, a_2010$ . For $1 leq n leq 2010$, where $n$ is positive
integer, let $a_1+a_2+ ldots +a_n = S_n$ . If $a_1 = 2010$ and $S_n = a_nn^2$ for all n, what is
the value of $a_2010$ ?



I've been trying to manipulate the formula but I cant seem to find a good relationship between $a_1$ and $a_2010$ like
$$
a_2010 = fraca_1 +a_2 ... +a_20102010^2
$$
Then tried to use the definition $S_n = a_nn^2 $ over and over again but I cant find a good formula.







share|cite|improve this question

























    up vote
    4
    down vote

    favorite












    There is a list of numbers $a_1 , a_2 , …, a_2010$ . For $1 leq n leq 2010$, where $n$ is positive
    integer, let $a_1+a_2+ ldots +a_n = S_n$ . If $a_1 = 2010$ and $S_n = a_nn^2$ for all n, what is
    the value of $a_2010$ ?



    I've been trying to manipulate the formula but I cant seem to find a good relationship between $a_1$ and $a_2010$ like
    $$
    a_2010 = fraca_1 +a_2 ... +a_20102010^2
    $$
    Then tried to use the definition $S_n = a_nn^2 $ over and over again but I cant find a good formula.







    share|cite|improve this question























      up vote
      4
      down vote

      favorite









      up vote
      4
      down vote

      favorite











      There is a list of numbers $a_1 , a_2 , …, a_2010$ . For $1 leq n leq 2010$, where $n$ is positive
      integer, let $a_1+a_2+ ldots +a_n = S_n$ . If $a_1 = 2010$ and $S_n = a_nn^2$ for all n, what is
      the value of $a_2010$ ?



      I've been trying to manipulate the formula but I cant seem to find a good relationship between $a_1$ and $a_2010$ like
      $$
      a_2010 = fraca_1 +a_2 ... +a_20102010^2
      $$
      Then tried to use the definition $S_n = a_nn^2 $ over and over again but I cant find a good formula.







      share|cite|improve this question













      There is a list of numbers $a_1 , a_2 , …, a_2010$ . For $1 leq n leq 2010$, where $n$ is positive
      integer, let $a_1+a_2+ ldots +a_n = S_n$ . If $a_1 = 2010$ and $S_n = a_nn^2$ for all n, what is
      the value of $a_2010$ ?



      I've been trying to manipulate the formula but I cant seem to find a good relationship between $a_1$ and $a_2010$ like
      $$
      a_2010 = fraca_1 +a_2 ... +a_20102010^2
      $$
      Then tried to use the definition $S_n = a_nn^2 $ over and over again but I cant find a good formula.









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Jul 24 at 13:36









      MathOverview

      7,95242962




      7,95242962









      asked Jul 24 at 13:32









      SuperMage1

      661210




      661210




















          6 Answers
          6






          active

          oldest

          votes

















          up vote
          2
          down vote



          accepted










          Hint:



          $$S_n-S_n-1=a_n$$
          and
          $$n^2a_n-(n-1)^2a_n-1=a_n$$



          so that



          $$a_n=fracn-1n+1a_n-1.$$



          Then



          $$a_n=fracn-1n+1a_n-1=fracn-1n+1fracn-2n-0a_n-2=fracn-1n+1fracn-2n-0fracn-3n-1a_n-3=fracn-1n+1fracn-2n-0fracn-3n-1fracn-4n-2a_n-4=cdots$$



          More generally, after simplification,



          $$a_n=frac2n+1frac1n-0a_1=2left(frac1n-frac1n+1right)a_1$$ and the sum telescopes.






          share|cite|improve this answer





















          • Crossed with Siong Thye Goh.
            – Yves Daoust
            Jul 24 at 13:56

















          up vote
          2
          down vote













          Start from the fact that (for $n>1$) $a_n=S_n-S_n-1$. This means
          $$a_n=a_nn^2-a_n-1(n-1)^2.$$
          If you use this to express $a_n$ in terms of $a_n-1$, and substitute in the corresponding expression for $a_n-1$, etc, a pattern should emerge.






          share|cite|improve this answer




























            up vote
            2
            down vote













            Since $a_n=frac1n^2-1sum_k=1^n-1a_k$, the strong induction hypothesis $a_n=frac2a_1n(n+1)$ gives $$a_n=frac2a_1(n-1)(n+1)sum_k=1^n-1(frac1k-frac1k+1)=frac2a_1(n-1)(n+1)(1-frac1n)=frac2a_1n(n+1).$$With our inductive proof complete, $a_2010=frac22011$.






            share|cite|improve this answer




























              up vote
              2
              down vote













              $$S_n = a_n n^2$$
              $$a_n+S_n-1=a_nn^2$$



              $$S_n-1=a_n(n^2-1)$$



              $$a_n-1(n-1)^2=a_n(n^2-1)$$



              $$a_n-1(n-1)=a_n(n+1)$$



              $$a_n=fracn-1n+1a_n-1=fracn-1n+1fracn-2na_n-2=fracn-1n+1fracn-2nfracn-3n-1a_n-3=frac(2)(1)(n+1)na_1$$






              share|cite|improve this answer




























                up vote
                2
                down vote













                We have



                $$S_2=a_2n^2=4a_2=a_1+a_2 implies a_2=frac13 a_1=670$$



                $$S_3=a_3n^2=9a_3=a_1+a_2+a_3 implies 8a_3=frac43 a_1 implies a_3=frac16 a_1=335$$



                $$S_4=a_4n^2=16a_4=a_1+a_2+a_3+a_4 implies 15a_4=frac32 a_1 implies a_3=frac110 a_1=201$$



                then we claim that $$a_n=frac1T(n)a_1=frac2n(n+1)a_1$$ to be proved by induction, that is



                $$S_n+1=a_n+1(n+1)^2=S_n+a_n+1=a_nn^2+a_n+1implies a_n+1((n+1)^2-1)=frac2n^2n(n+1)a_1$$



                $$implies a_n+1=frac2n^2n(n+1)(n^2+2n)a_1=frac2(n+1)(n+2)a_1$$






                share|cite|improve this answer






























                  up vote
                  1
                  down vote













                  We have $a_ncdot n^2=a_1+a_2+ldots+a_n=S_n$. Then
                  $$
                  beginarraycc
                  beginarrayrlrl
                  fracquadquada_1cdot 1^2=&2010\
                  fracquadquada_2cdot 2^2=&a_1+a_2\
                  fracquadquada_3cdot 3^2=&a_1+a_2+a_3\
                  fracquadquada_4cdot 4^2=&a_1+a_2+a_3+a_4\
                  endarray
                  &
                  beginarrayrl
                  implies a_1=&2010\
                  implies a_2 =& frac12^2-12010\
                  implies a_3=&frac13^2-12010+frac13^2-1frac12^2-12010\
                  implies a_4=&frac14^2-12010+frac14^2-1frac13^2-12010+frac14^2-1frac13^2-1frac12^2-12010\
                  endarray
                  endarray
                  $$
                  Now is easy to see
                  $$
                  a_n=2010left(frac1n^2-1+frac1n^2-1cdotfrac1(n-1)^2-1+ldots+frac1n^2-1cdotfrac1(n-1)^2-1cdotldotscdotfrac12^2-1right)
                  $$






                  share|cite|improve this answer























                    Your Answer




                    StackExchange.ifUsing("editor", function ()
                    return StackExchange.using("mathjaxEditing", function ()
                    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
                    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                    );
                    );
                    , "mathjax-editing");

                    StackExchange.ready(function()
                    var channelOptions =
                    tags: "".split(" "),
                    id: "69"
                    ;
                    initTagRenderer("".split(" "), "".split(" "), channelOptions);

                    StackExchange.using("externalEditor", function()
                    // Have to fire editor after snippets, if snippets enabled
                    if (StackExchange.settings.snippets.snippetsEnabled)
                    StackExchange.using("snippets", function()
                    createEditor();
                    );

                    else
                    createEditor();

                    );

                    function createEditor()
                    StackExchange.prepareEditor(
                    heartbeatType: 'answer',
                    convertImagesToLinks: true,
                    noModals: false,
                    showLowRepImageUploadWarning: true,
                    reputationToPostImages: 10,
                    bindNavPrevention: true,
                    postfix: "",
                    noCode: true, onDemand: true,
                    discardSelector: ".discard-answer"
                    ,immediatelyShowMarkdownHelp:true
                    );



                    );








                     

                    draft saved


                    draft discarded


















                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2861332%2fsequences-and-sums%23new-answer', 'question_page');

                    );

                    Post as a guest






























                    6 Answers
                    6






                    active

                    oldest

                    votes








                    6 Answers
                    6






                    active

                    oldest

                    votes









                    active

                    oldest

                    votes






                    active

                    oldest

                    votes








                    up vote
                    2
                    down vote



                    accepted










                    Hint:



                    $$S_n-S_n-1=a_n$$
                    and
                    $$n^2a_n-(n-1)^2a_n-1=a_n$$



                    so that



                    $$a_n=fracn-1n+1a_n-1.$$



                    Then



                    $$a_n=fracn-1n+1a_n-1=fracn-1n+1fracn-2n-0a_n-2=fracn-1n+1fracn-2n-0fracn-3n-1a_n-3=fracn-1n+1fracn-2n-0fracn-3n-1fracn-4n-2a_n-4=cdots$$



                    More generally, after simplification,



                    $$a_n=frac2n+1frac1n-0a_1=2left(frac1n-frac1n+1right)a_1$$ and the sum telescopes.






                    share|cite|improve this answer





















                    • Crossed with Siong Thye Goh.
                      – Yves Daoust
                      Jul 24 at 13:56














                    up vote
                    2
                    down vote



                    accepted










                    Hint:



                    $$S_n-S_n-1=a_n$$
                    and
                    $$n^2a_n-(n-1)^2a_n-1=a_n$$



                    so that



                    $$a_n=fracn-1n+1a_n-1.$$



                    Then



                    $$a_n=fracn-1n+1a_n-1=fracn-1n+1fracn-2n-0a_n-2=fracn-1n+1fracn-2n-0fracn-3n-1a_n-3=fracn-1n+1fracn-2n-0fracn-3n-1fracn-4n-2a_n-4=cdots$$



                    More generally, after simplification,



                    $$a_n=frac2n+1frac1n-0a_1=2left(frac1n-frac1n+1right)a_1$$ and the sum telescopes.






                    share|cite|improve this answer





















                    • Crossed with Siong Thye Goh.
                      – Yves Daoust
                      Jul 24 at 13:56












                    up vote
                    2
                    down vote



                    accepted







                    up vote
                    2
                    down vote



                    accepted






                    Hint:



                    $$S_n-S_n-1=a_n$$
                    and
                    $$n^2a_n-(n-1)^2a_n-1=a_n$$



                    so that



                    $$a_n=fracn-1n+1a_n-1.$$



                    Then



                    $$a_n=fracn-1n+1a_n-1=fracn-1n+1fracn-2n-0a_n-2=fracn-1n+1fracn-2n-0fracn-3n-1a_n-3=fracn-1n+1fracn-2n-0fracn-3n-1fracn-4n-2a_n-4=cdots$$



                    More generally, after simplification,



                    $$a_n=frac2n+1frac1n-0a_1=2left(frac1n-frac1n+1right)a_1$$ and the sum telescopes.






                    share|cite|improve this answer













                    Hint:



                    $$S_n-S_n-1=a_n$$
                    and
                    $$n^2a_n-(n-1)^2a_n-1=a_n$$



                    so that



                    $$a_n=fracn-1n+1a_n-1.$$



                    Then



                    $$a_n=fracn-1n+1a_n-1=fracn-1n+1fracn-2n-0a_n-2=fracn-1n+1fracn-2n-0fracn-3n-1a_n-3=fracn-1n+1fracn-2n-0fracn-3n-1fracn-4n-2a_n-4=cdots$$



                    More generally, after simplification,



                    $$a_n=frac2n+1frac1n-0a_1=2left(frac1n-frac1n+1right)a_1$$ and the sum telescopes.







                    share|cite|improve this answer













                    share|cite|improve this answer



                    share|cite|improve this answer











                    answered Jul 24 at 13:54









                    Yves Daoust

                    111k665203




                    111k665203











                    • Crossed with Siong Thye Goh.
                      – Yves Daoust
                      Jul 24 at 13:56
















                    • Crossed with Siong Thye Goh.
                      – Yves Daoust
                      Jul 24 at 13:56















                    Crossed with Siong Thye Goh.
                    – Yves Daoust
                    Jul 24 at 13:56




                    Crossed with Siong Thye Goh.
                    – Yves Daoust
                    Jul 24 at 13:56










                    up vote
                    2
                    down vote













                    Start from the fact that (for $n>1$) $a_n=S_n-S_n-1$. This means
                    $$a_n=a_nn^2-a_n-1(n-1)^2.$$
                    If you use this to express $a_n$ in terms of $a_n-1$, and substitute in the corresponding expression for $a_n-1$, etc, a pattern should emerge.






                    share|cite|improve this answer

























                      up vote
                      2
                      down vote













                      Start from the fact that (for $n>1$) $a_n=S_n-S_n-1$. This means
                      $$a_n=a_nn^2-a_n-1(n-1)^2.$$
                      If you use this to express $a_n$ in terms of $a_n-1$, and substitute in the corresponding expression for $a_n-1$, etc, a pattern should emerge.






                      share|cite|improve this answer























                        up vote
                        2
                        down vote










                        up vote
                        2
                        down vote









                        Start from the fact that (for $n>1$) $a_n=S_n-S_n-1$. This means
                        $$a_n=a_nn^2-a_n-1(n-1)^2.$$
                        If you use this to express $a_n$ in terms of $a_n-1$, and substitute in the corresponding expression for $a_n-1$, etc, a pattern should emerge.






                        share|cite|improve this answer













                        Start from the fact that (for $n>1$) $a_n=S_n-S_n-1$. This means
                        $$a_n=a_nn^2-a_n-1(n-1)^2.$$
                        If you use this to express $a_n$ in terms of $a_n-1$, and substitute in the corresponding expression for $a_n-1$, etc, a pattern should emerge.







                        share|cite|improve this answer













                        share|cite|improve this answer



                        share|cite|improve this answer











                        answered Jul 24 at 13:42









                        Especially Lime

                        19k22252




                        19k22252




















                            up vote
                            2
                            down vote













                            Since $a_n=frac1n^2-1sum_k=1^n-1a_k$, the strong induction hypothesis $a_n=frac2a_1n(n+1)$ gives $$a_n=frac2a_1(n-1)(n+1)sum_k=1^n-1(frac1k-frac1k+1)=frac2a_1(n-1)(n+1)(1-frac1n)=frac2a_1n(n+1).$$With our inductive proof complete, $a_2010=frac22011$.






                            share|cite|improve this answer

























                              up vote
                              2
                              down vote













                              Since $a_n=frac1n^2-1sum_k=1^n-1a_k$, the strong induction hypothesis $a_n=frac2a_1n(n+1)$ gives $$a_n=frac2a_1(n-1)(n+1)sum_k=1^n-1(frac1k-frac1k+1)=frac2a_1(n-1)(n+1)(1-frac1n)=frac2a_1n(n+1).$$With our inductive proof complete, $a_2010=frac22011$.






                              share|cite|improve this answer























                                up vote
                                2
                                down vote










                                up vote
                                2
                                down vote









                                Since $a_n=frac1n^2-1sum_k=1^n-1a_k$, the strong induction hypothesis $a_n=frac2a_1n(n+1)$ gives $$a_n=frac2a_1(n-1)(n+1)sum_k=1^n-1(frac1k-frac1k+1)=frac2a_1(n-1)(n+1)(1-frac1n)=frac2a_1n(n+1).$$With our inductive proof complete, $a_2010=frac22011$.






                                share|cite|improve this answer













                                Since $a_n=frac1n^2-1sum_k=1^n-1a_k$, the strong induction hypothesis $a_n=frac2a_1n(n+1)$ gives $$a_n=frac2a_1(n-1)(n+1)sum_k=1^n-1(frac1k-frac1k+1)=frac2a_1(n-1)(n+1)(1-frac1n)=frac2a_1n(n+1).$$With our inductive proof complete, $a_2010=frac22011$.







                                share|cite|improve this answer













                                share|cite|improve this answer



                                share|cite|improve this answer











                                answered Jul 24 at 13:45









                                J.G.

                                13.2k11424




                                13.2k11424




















                                    up vote
                                    2
                                    down vote













                                    $$S_n = a_n n^2$$
                                    $$a_n+S_n-1=a_nn^2$$



                                    $$S_n-1=a_n(n^2-1)$$



                                    $$a_n-1(n-1)^2=a_n(n^2-1)$$



                                    $$a_n-1(n-1)=a_n(n+1)$$



                                    $$a_n=fracn-1n+1a_n-1=fracn-1n+1fracn-2na_n-2=fracn-1n+1fracn-2nfracn-3n-1a_n-3=frac(2)(1)(n+1)na_1$$






                                    share|cite|improve this answer

























                                      up vote
                                      2
                                      down vote













                                      $$S_n = a_n n^2$$
                                      $$a_n+S_n-1=a_nn^2$$



                                      $$S_n-1=a_n(n^2-1)$$



                                      $$a_n-1(n-1)^2=a_n(n^2-1)$$



                                      $$a_n-1(n-1)=a_n(n+1)$$



                                      $$a_n=fracn-1n+1a_n-1=fracn-1n+1fracn-2na_n-2=fracn-1n+1fracn-2nfracn-3n-1a_n-3=frac(2)(1)(n+1)na_1$$






                                      share|cite|improve this answer























                                        up vote
                                        2
                                        down vote










                                        up vote
                                        2
                                        down vote









                                        $$S_n = a_n n^2$$
                                        $$a_n+S_n-1=a_nn^2$$



                                        $$S_n-1=a_n(n^2-1)$$



                                        $$a_n-1(n-1)^2=a_n(n^2-1)$$



                                        $$a_n-1(n-1)=a_n(n+1)$$



                                        $$a_n=fracn-1n+1a_n-1=fracn-1n+1fracn-2na_n-2=fracn-1n+1fracn-2nfracn-3n-1a_n-3=frac(2)(1)(n+1)na_1$$






                                        share|cite|improve this answer













                                        $$S_n = a_n n^2$$
                                        $$a_n+S_n-1=a_nn^2$$



                                        $$S_n-1=a_n(n^2-1)$$



                                        $$a_n-1(n-1)^2=a_n(n^2-1)$$



                                        $$a_n-1(n-1)=a_n(n+1)$$



                                        $$a_n=fracn-1n+1a_n-1=fracn-1n+1fracn-2na_n-2=fracn-1n+1fracn-2nfracn-3n-1a_n-3=frac(2)(1)(n+1)na_1$$







                                        share|cite|improve this answer













                                        share|cite|improve this answer



                                        share|cite|improve this answer











                                        answered Jul 24 at 13:45









                                        Siong Thye Goh

                                        77.4k134795




                                        77.4k134795




















                                            up vote
                                            2
                                            down vote













                                            We have



                                            $$S_2=a_2n^2=4a_2=a_1+a_2 implies a_2=frac13 a_1=670$$



                                            $$S_3=a_3n^2=9a_3=a_1+a_2+a_3 implies 8a_3=frac43 a_1 implies a_3=frac16 a_1=335$$



                                            $$S_4=a_4n^2=16a_4=a_1+a_2+a_3+a_4 implies 15a_4=frac32 a_1 implies a_3=frac110 a_1=201$$



                                            then we claim that $$a_n=frac1T(n)a_1=frac2n(n+1)a_1$$ to be proved by induction, that is



                                            $$S_n+1=a_n+1(n+1)^2=S_n+a_n+1=a_nn^2+a_n+1implies a_n+1((n+1)^2-1)=frac2n^2n(n+1)a_1$$



                                            $$implies a_n+1=frac2n^2n(n+1)(n^2+2n)a_1=frac2(n+1)(n+2)a_1$$






                                            share|cite|improve this answer



























                                              up vote
                                              2
                                              down vote













                                              We have



                                              $$S_2=a_2n^2=4a_2=a_1+a_2 implies a_2=frac13 a_1=670$$



                                              $$S_3=a_3n^2=9a_3=a_1+a_2+a_3 implies 8a_3=frac43 a_1 implies a_3=frac16 a_1=335$$



                                              $$S_4=a_4n^2=16a_4=a_1+a_2+a_3+a_4 implies 15a_4=frac32 a_1 implies a_3=frac110 a_1=201$$



                                              then we claim that $$a_n=frac1T(n)a_1=frac2n(n+1)a_1$$ to be proved by induction, that is



                                              $$S_n+1=a_n+1(n+1)^2=S_n+a_n+1=a_nn^2+a_n+1implies a_n+1((n+1)^2-1)=frac2n^2n(n+1)a_1$$



                                              $$implies a_n+1=frac2n^2n(n+1)(n^2+2n)a_1=frac2(n+1)(n+2)a_1$$






                                              share|cite|improve this answer

























                                                up vote
                                                2
                                                down vote










                                                up vote
                                                2
                                                down vote









                                                We have



                                                $$S_2=a_2n^2=4a_2=a_1+a_2 implies a_2=frac13 a_1=670$$



                                                $$S_3=a_3n^2=9a_3=a_1+a_2+a_3 implies 8a_3=frac43 a_1 implies a_3=frac16 a_1=335$$



                                                $$S_4=a_4n^2=16a_4=a_1+a_2+a_3+a_4 implies 15a_4=frac32 a_1 implies a_3=frac110 a_1=201$$



                                                then we claim that $$a_n=frac1T(n)a_1=frac2n(n+1)a_1$$ to be proved by induction, that is



                                                $$S_n+1=a_n+1(n+1)^2=S_n+a_n+1=a_nn^2+a_n+1implies a_n+1((n+1)^2-1)=frac2n^2n(n+1)a_1$$



                                                $$implies a_n+1=frac2n^2n(n+1)(n^2+2n)a_1=frac2(n+1)(n+2)a_1$$






                                                share|cite|improve this answer















                                                We have



                                                $$S_2=a_2n^2=4a_2=a_1+a_2 implies a_2=frac13 a_1=670$$



                                                $$S_3=a_3n^2=9a_3=a_1+a_2+a_3 implies 8a_3=frac43 a_1 implies a_3=frac16 a_1=335$$



                                                $$S_4=a_4n^2=16a_4=a_1+a_2+a_3+a_4 implies 15a_4=frac32 a_1 implies a_3=frac110 a_1=201$$



                                                then we claim that $$a_n=frac1T(n)a_1=frac2n(n+1)a_1$$ to be proved by induction, that is



                                                $$S_n+1=a_n+1(n+1)^2=S_n+a_n+1=a_nn^2+a_n+1implies a_n+1((n+1)^2-1)=frac2n^2n(n+1)a_1$$



                                                $$implies a_n+1=frac2n^2n(n+1)(n^2+2n)a_1=frac2(n+1)(n+2)a_1$$







                                                share|cite|improve this answer















                                                share|cite|improve this answer



                                                share|cite|improve this answer








                                                edited Jul 24 at 13:49


























                                                answered Jul 24 at 13:41









                                                gimusi

                                                65.2k73583




                                                65.2k73583




















                                                    up vote
                                                    1
                                                    down vote













                                                    We have $a_ncdot n^2=a_1+a_2+ldots+a_n=S_n$. Then
                                                    $$
                                                    beginarraycc
                                                    beginarrayrlrl
                                                    fracquadquada_1cdot 1^2=&2010\
                                                    fracquadquada_2cdot 2^2=&a_1+a_2\
                                                    fracquadquada_3cdot 3^2=&a_1+a_2+a_3\
                                                    fracquadquada_4cdot 4^2=&a_1+a_2+a_3+a_4\
                                                    endarray
                                                    &
                                                    beginarrayrl
                                                    implies a_1=&2010\
                                                    implies a_2 =& frac12^2-12010\
                                                    implies a_3=&frac13^2-12010+frac13^2-1frac12^2-12010\
                                                    implies a_4=&frac14^2-12010+frac14^2-1frac13^2-12010+frac14^2-1frac13^2-1frac12^2-12010\
                                                    endarray
                                                    endarray
                                                    $$
                                                    Now is easy to see
                                                    $$
                                                    a_n=2010left(frac1n^2-1+frac1n^2-1cdotfrac1(n-1)^2-1+ldots+frac1n^2-1cdotfrac1(n-1)^2-1cdotldotscdotfrac12^2-1right)
                                                    $$






                                                    share|cite|improve this answer



























                                                      up vote
                                                      1
                                                      down vote













                                                      We have $a_ncdot n^2=a_1+a_2+ldots+a_n=S_n$. Then
                                                      $$
                                                      beginarraycc
                                                      beginarrayrlrl
                                                      fracquadquada_1cdot 1^2=&2010\
                                                      fracquadquada_2cdot 2^2=&a_1+a_2\
                                                      fracquadquada_3cdot 3^2=&a_1+a_2+a_3\
                                                      fracquadquada_4cdot 4^2=&a_1+a_2+a_3+a_4\
                                                      endarray
                                                      &
                                                      beginarrayrl
                                                      implies a_1=&2010\
                                                      implies a_2 =& frac12^2-12010\
                                                      implies a_3=&frac13^2-12010+frac13^2-1frac12^2-12010\
                                                      implies a_4=&frac14^2-12010+frac14^2-1frac13^2-12010+frac14^2-1frac13^2-1frac12^2-12010\
                                                      endarray
                                                      endarray
                                                      $$
                                                      Now is easy to see
                                                      $$
                                                      a_n=2010left(frac1n^2-1+frac1n^2-1cdotfrac1(n-1)^2-1+ldots+frac1n^2-1cdotfrac1(n-1)^2-1cdotldotscdotfrac12^2-1right)
                                                      $$






                                                      share|cite|improve this answer

























                                                        up vote
                                                        1
                                                        down vote










                                                        up vote
                                                        1
                                                        down vote









                                                        We have $a_ncdot n^2=a_1+a_2+ldots+a_n=S_n$. Then
                                                        $$
                                                        beginarraycc
                                                        beginarrayrlrl
                                                        fracquadquada_1cdot 1^2=&2010\
                                                        fracquadquada_2cdot 2^2=&a_1+a_2\
                                                        fracquadquada_3cdot 3^2=&a_1+a_2+a_3\
                                                        fracquadquada_4cdot 4^2=&a_1+a_2+a_3+a_4\
                                                        endarray
                                                        &
                                                        beginarrayrl
                                                        implies a_1=&2010\
                                                        implies a_2 =& frac12^2-12010\
                                                        implies a_3=&frac13^2-12010+frac13^2-1frac12^2-12010\
                                                        implies a_4=&frac14^2-12010+frac14^2-1frac13^2-12010+frac14^2-1frac13^2-1frac12^2-12010\
                                                        endarray
                                                        endarray
                                                        $$
                                                        Now is easy to see
                                                        $$
                                                        a_n=2010left(frac1n^2-1+frac1n^2-1cdotfrac1(n-1)^2-1+ldots+frac1n^2-1cdotfrac1(n-1)^2-1cdotldotscdotfrac12^2-1right)
                                                        $$






                                                        share|cite|improve this answer















                                                        We have $a_ncdot n^2=a_1+a_2+ldots+a_n=S_n$. Then
                                                        $$
                                                        beginarraycc
                                                        beginarrayrlrl
                                                        fracquadquada_1cdot 1^2=&2010\
                                                        fracquadquada_2cdot 2^2=&a_1+a_2\
                                                        fracquadquada_3cdot 3^2=&a_1+a_2+a_3\
                                                        fracquadquada_4cdot 4^2=&a_1+a_2+a_3+a_4\
                                                        endarray
                                                        &
                                                        beginarrayrl
                                                        implies a_1=&2010\
                                                        implies a_2 =& frac12^2-12010\
                                                        implies a_3=&frac13^2-12010+frac13^2-1frac12^2-12010\
                                                        implies a_4=&frac14^2-12010+frac14^2-1frac13^2-12010+frac14^2-1frac13^2-1frac12^2-12010\
                                                        endarray
                                                        endarray
                                                        $$
                                                        Now is easy to see
                                                        $$
                                                        a_n=2010left(frac1n^2-1+frac1n^2-1cdotfrac1(n-1)^2-1+ldots+frac1n^2-1cdotfrac1(n-1)^2-1cdotldotscdotfrac12^2-1right)
                                                        $$







                                                        share|cite|improve this answer















                                                        share|cite|improve this answer



                                                        share|cite|improve this answer








                                                        edited Jul 24 at 14:05


























                                                        answered Jul 24 at 13:41









                                                        MathOverview

                                                        7,95242962




                                                        7,95242962






















                                                             

                                                            draft saved


                                                            draft discarded


























                                                             


                                                            draft saved


                                                            draft discarded














                                                            StackExchange.ready(
                                                            function ()
                                                            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2861332%2fsequences-and-sums%23new-answer', 'question_page');

                                                            );

                                                            Post as a guest













































































                                                            Comments

                                                            Popular posts from this blog

                                                            What is the equation of a 3D cone with generalised tilt?

                                                            Color the edges and diagonals of a regular polygon

                                                            Relationship between determinant of matrix and determinant of adjoint?