Solve $frac1x+frac1y= frac12007$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
3
down vote

favorite
2












The number of positive integral pairs $(x<y)$ such that $frac1x+frac1y= frac12007$



The answer is 7 where as i am getting 6.
The ordered pair are (2676,8028),(2230,20070),(2016,449568),(2010,1344690),(2008,4030056)&(2008,4028049).



I cannot find my mistake.







share|cite|improve this question

















  • 2




    How can $1/2008+1/4030056$ and $1/2008+1/4028049$ both be $1/2007$?
    – Henning Makholm
    Jul 24 at 9:43










  • There are solutions with $x=2034, 2088$ (and $4014$, but you may not accept that)
    – Henry
    Jul 24 at 9:57






  • 2




    How can we find your mistake if you don't tell us how you calculated them?
    – miracle173
    Jul 24 at 9:59










  • I checked in excel
    – Samar Imam Zaidi
    Jul 24 at 10:28














up vote
3
down vote

favorite
2












The number of positive integral pairs $(x<y)$ such that $frac1x+frac1y= frac12007$



The answer is 7 where as i am getting 6.
The ordered pair are (2676,8028),(2230,20070),(2016,449568),(2010,1344690),(2008,4030056)&(2008,4028049).



I cannot find my mistake.







share|cite|improve this question

















  • 2




    How can $1/2008+1/4030056$ and $1/2008+1/4028049$ both be $1/2007$?
    – Henning Makholm
    Jul 24 at 9:43










  • There are solutions with $x=2034, 2088$ (and $4014$, but you may not accept that)
    – Henry
    Jul 24 at 9:57






  • 2




    How can we find your mistake if you don't tell us how you calculated them?
    – miracle173
    Jul 24 at 9:59










  • I checked in excel
    – Samar Imam Zaidi
    Jul 24 at 10:28












up vote
3
down vote

favorite
2









up vote
3
down vote

favorite
2






2





The number of positive integral pairs $(x<y)$ such that $frac1x+frac1y= frac12007$



The answer is 7 where as i am getting 6.
The ordered pair are (2676,8028),(2230,20070),(2016,449568),(2010,1344690),(2008,4030056)&(2008,4028049).



I cannot find my mistake.







share|cite|improve this question













The number of positive integral pairs $(x<y)$ such that $frac1x+frac1y= frac12007$



The answer is 7 where as i am getting 6.
The ordered pair are (2676,8028),(2230,20070),(2016,449568),(2010,1344690),(2008,4030056)&(2008,4028049).



I cannot find my mistake.









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 30 at 12:50









Harry Peter

5,45311438




5,45311438









asked Jul 24 at 9:36









Samar Imam Zaidi

1,063316




1,063316







  • 2




    How can $1/2008+1/4030056$ and $1/2008+1/4028049$ both be $1/2007$?
    – Henning Makholm
    Jul 24 at 9:43










  • There are solutions with $x=2034, 2088$ (and $4014$, but you may not accept that)
    – Henry
    Jul 24 at 9:57






  • 2




    How can we find your mistake if you don't tell us how you calculated them?
    – miracle173
    Jul 24 at 9:59










  • I checked in excel
    – Samar Imam Zaidi
    Jul 24 at 10:28












  • 2




    How can $1/2008+1/4030056$ and $1/2008+1/4028049$ both be $1/2007$?
    – Henning Makholm
    Jul 24 at 9:43










  • There are solutions with $x=2034, 2088$ (and $4014$, but you may not accept that)
    – Henry
    Jul 24 at 9:57






  • 2




    How can we find your mistake if you don't tell us how you calculated them?
    – miracle173
    Jul 24 at 9:59










  • I checked in excel
    – Samar Imam Zaidi
    Jul 24 at 10:28







2




2




How can $1/2008+1/4030056$ and $1/2008+1/4028049$ both be $1/2007$?
– Henning Makholm
Jul 24 at 9:43




How can $1/2008+1/4030056$ and $1/2008+1/4028049$ both be $1/2007$?
– Henning Makholm
Jul 24 at 9:43












There are solutions with $x=2034, 2088$ (and $4014$, but you may not accept that)
– Henry
Jul 24 at 9:57




There are solutions with $x=2034, 2088$ (and $4014$, but you may not accept that)
– Henry
Jul 24 at 9:57




2




2




How can we find your mistake if you don't tell us how you calculated them?
– miracle173
Jul 24 at 9:59




How can we find your mistake if you don't tell us how you calculated them?
– miracle173
Jul 24 at 9:59












I checked in excel
– Samar Imam Zaidi
Jul 24 at 10:28




I checked in excel
– Samar Imam Zaidi
Jul 24 at 10:28










2 Answers
2






active

oldest

votes

















up vote
5
down vote



accepted










$$2007x + 2007 y = xy$$



$$0=xy-2007-2007y$$



$$2007^2=xy-2007x-2007y+2007^2$$



$$(2007^2)=(x-2007)(y-2007)$$



$$3^4cdot 223^2=(x-2007)(y-2007)$$



beginalign3^4cdot 223^2 &=(3^0) cdot (3^4cdot 223^2)\
&=(3^1) cdot (3^3cdot 223^2)
\
&=(3^2) cdot (3^2cdot 223^2)
\
&=(3^3) cdot (3^1cdot 223^2)\
&=(3^4) cdot (3^0cdot 223^2)\
&=(3^0cdot 223) cdot (3^4cdot 223)\
&=(3^1cdot 223) cdot (3^3cdot 223)
endalign



I hope you can recover $x$ and $y$ from here.






share|cite|improve this answer





















  • There is also $(3^2cdot 223) cdot (3^2cdot 223)$ though this may be excluded by $x lt y$
    – Henry
    Jul 24 at 9:59










  • Thanking you for the prompt reply.
    – Samar Imam Zaidi
    Jul 24 at 10:28










  • @Henry: “may be” excluded??
    – TonyK
    Jul 30 at 13:02










  • @TonyK "can be" or "should be" if you prefer, but it is another factorisation of $3^4cdot 223^2$
    – Henry
    Jul 30 at 15:25










  • I would prefer “is”.
    – TonyK
    Jul 30 at 15:59

















up vote
6
down vote













Write the equations as,



$$(x+y)2007=xy$$



$$xy-2007x-2007y+2007^2=2007^2$$



$$(x-2007)(y-2007)=2007^2$$



also, $2007=3^2.223$



Can you continue?






share|cite|improve this answer





















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2861165%2fsolve-frac1x-frac1y-frac12007%23new-answer', 'question_page');

    );

    Post as a guest






























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    5
    down vote



    accepted










    $$2007x + 2007 y = xy$$



    $$0=xy-2007-2007y$$



    $$2007^2=xy-2007x-2007y+2007^2$$



    $$(2007^2)=(x-2007)(y-2007)$$



    $$3^4cdot 223^2=(x-2007)(y-2007)$$



    beginalign3^4cdot 223^2 &=(3^0) cdot (3^4cdot 223^2)\
    &=(3^1) cdot (3^3cdot 223^2)
    \
    &=(3^2) cdot (3^2cdot 223^2)
    \
    &=(3^3) cdot (3^1cdot 223^2)\
    &=(3^4) cdot (3^0cdot 223^2)\
    &=(3^0cdot 223) cdot (3^4cdot 223)\
    &=(3^1cdot 223) cdot (3^3cdot 223)
    endalign



    I hope you can recover $x$ and $y$ from here.






    share|cite|improve this answer





















    • There is also $(3^2cdot 223) cdot (3^2cdot 223)$ though this may be excluded by $x lt y$
      – Henry
      Jul 24 at 9:59










    • Thanking you for the prompt reply.
      – Samar Imam Zaidi
      Jul 24 at 10:28










    • @Henry: “may be” excluded??
      – TonyK
      Jul 30 at 13:02










    • @TonyK "can be" or "should be" if you prefer, but it is another factorisation of $3^4cdot 223^2$
      – Henry
      Jul 30 at 15:25










    • I would prefer “is”.
      – TonyK
      Jul 30 at 15:59














    up vote
    5
    down vote



    accepted










    $$2007x + 2007 y = xy$$



    $$0=xy-2007-2007y$$



    $$2007^2=xy-2007x-2007y+2007^2$$



    $$(2007^2)=(x-2007)(y-2007)$$



    $$3^4cdot 223^2=(x-2007)(y-2007)$$



    beginalign3^4cdot 223^2 &=(3^0) cdot (3^4cdot 223^2)\
    &=(3^1) cdot (3^3cdot 223^2)
    \
    &=(3^2) cdot (3^2cdot 223^2)
    \
    &=(3^3) cdot (3^1cdot 223^2)\
    &=(3^4) cdot (3^0cdot 223^2)\
    &=(3^0cdot 223) cdot (3^4cdot 223)\
    &=(3^1cdot 223) cdot (3^3cdot 223)
    endalign



    I hope you can recover $x$ and $y$ from here.






    share|cite|improve this answer





















    • There is also $(3^2cdot 223) cdot (3^2cdot 223)$ though this may be excluded by $x lt y$
      – Henry
      Jul 24 at 9:59










    • Thanking you for the prompt reply.
      – Samar Imam Zaidi
      Jul 24 at 10:28










    • @Henry: “may be” excluded??
      – TonyK
      Jul 30 at 13:02










    • @TonyK "can be" or "should be" if you prefer, but it is another factorisation of $3^4cdot 223^2$
      – Henry
      Jul 30 at 15:25










    • I would prefer “is”.
      – TonyK
      Jul 30 at 15:59












    up vote
    5
    down vote



    accepted







    up vote
    5
    down vote



    accepted






    $$2007x + 2007 y = xy$$



    $$0=xy-2007-2007y$$



    $$2007^2=xy-2007x-2007y+2007^2$$



    $$(2007^2)=(x-2007)(y-2007)$$



    $$3^4cdot 223^2=(x-2007)(y-2007)$$



    beginalign3^4cdot 223^2 &=(3^0) cdot (3^4cdot 223^2)\
    &=(3^1) cdot (3^3cdot 223^2)
    \
    &=(3^2) cdot (3^2cdot 223^2)
    \
    &=(3^3) cdot (3^1cdot 223^2)\
    &=(3^4) cdot (3^0cdot 223^2)\
    &=(3^0cdot 223) cdot (3^4cdot 223)\
    &=(3^1cdot 223) cdot (3^3cdot 223)
    endalign



    I hope you can recover $x$ and $y$ from here.






    share|cite|improve this answer













    $$2007x + 2007 y = xy$$



    $$0=xy-2007-2007y$$



    $$2007^2=xy-2007x-2007y+2007^2$$



    $$(2007^2)=(x-2007)(y-2007)$$



    $$3^4cdot 223^2=(x-2007)(y-2007)$$



    beginalign3^4cdot 223^2 &=(3^0) cdot (3^4cdot 223^2)\
    &=(3^1) cdot (3^3cdot 223^2)
    \
    &=(3^2) cdot (3^2cdot 223^2)
    \
    &=(3^3) cdot (3^1cdot 223^2)\
    &=(3^4) cdot (3^0cdot 223^2)\
    &=(3^0cdot 223) cdot (3^4cdot 223)\
    &=(3^1cdot 223) cdot (3^3cdot 223)
    endalign



    I hope you can recover $x$ and $y$ from here.







    share|cite|improve this answer













    share|cite|improve this answer



    share|cite|improve this answer











    answered Jul 24 at 9:47









    Siong Thye Goh

    77.4k134795




    77.4k134795











    • There is also $(3^2cdot 223) cdot (3^2cdot 223)$ though this may be excluded by $x lt y$
      – Henry
      Jul 24 at 9:59










    • Thanking you for the prompt reply.
      – Samar Imam Zaidi
      Jul 24 at 10:28










    • @Henry: “may be” excluded??
      – TonyK
      Jul 30 at 13:02










    • @TonyK "can be" or "should be" if you prefer, but it is another factorisation of $3^4cdot 223^2$
      – Henry
      Jul 30 at 15:25










    • I would prefer “is”.
      – TonyK
      Jul 30 at 15:59
















    • There is also $(3^2cdot 223) cdot (3^2cdot 223)$ though this may be excluded by $x lt y$
      – Henry
      Jul 24 at 9:59










    • Thanking you for the prompt reply.
      – Samar Imam Zaidi
      Jul 24 at 10:28










    • @Henry: “may be” excluded??
      – TonyK
      Jul 30 at 13:02










    • @TonyK "can be" or "should be" if you prefer, but it is another factorisation of $3^4cdot 223^2$
      – Henry
      Jul 30 at 15:25










    • I would prefer “is”.
      – TonyK
      Jul 30 at 15:59















    There is also $(3^2cdot 223) cdot (3^2cdot 223)$ though this may be excluded by $x lt y$
    – Henry
    Jul 24 at 9:59




    There is also $(3^2cdot 223) cdot (3^2cdot 223)$ though this may be excluded by $x lt y$
    – Henry
    Jul 24 at 9:59












    Thanking you for the prompt reply.
    – Samar Imam Zaidi
    Jul 24 at 10:28




    Thanking you for the prompt reply.
    – Samar Imam Zaidi
    Jul 24 at 10:28












    @Henry: “may be” excluded??
    – TonyK
    Jul 30 at 13:02




    @Henry: “may be” excluded??
    – TonyK
    Jul 30 at 13:02












    @TonyK "can be" or "should be" if you prefer, but it is another factorisation of $3^4cdot 223^2$
    – Henry
    Jul 30 at 15:25




    @TonyK "can be" or "should be" if you prefer, but it is another factorisation of $3^4cdot 223^2$
    – Henry
    Jul 30 at 15:25












    I would prefer “is”.
    – TonyK
    Jul 30 at 15:59




    I would prefer “is”.
    – TonyK
    Jul 30 at 15:59










    up vote
    6
    down vote













    Write the equations as,



    $$(x+y)2007=xy$$



    $$xy-2007x-2007y+2007^2=2007^2$$



    $$(x-2007)(y-2007)=2007^2$$



    also, $2007=3^2.223$



    Can you continue?






    share|cite|improve this answer

























      up vote
      6
      down vote













      Write the equations as,



      $$(x+y)2007=xy$$



      $$xy-2007x-2007y+2007^2=2007^2$$



      $$(x-2007)(y-2007)=2007^2$$



      also, $2007=3^2.223$



      Can you continue?






      share|cite|improve this answer























        up vote
        6
        down vote










        up vote
        6
        down vote









        Write the equations as,



        $$(x+y)2007=xy$$



        $$xy-2007x-2007y+2007^2=2007^2$$



        $$(x-2007)(y-2007)=2007^2$$



        also, $2007=3^2.223$



        Can you continue?






        share|cite|improve this answer













        Write the equations as,



        $$(x+y)2007=xy$$



        $$xy-2007x-2007y+2007^2=2007^2$$



        $$(x-2007)(y-2007)=2007^2$$



        also, $2007=3^2.223$



        Can you continue?







        share|cite|improve this answer













        share|cite|improve this answer



        share|cite|improve this answer











        answered Jul 24 at 9:47









        prog_SAHIL

        773217




        773217






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2861165%2fsolve-frac1x-frac1y-frac12007%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What is the equation of a 3D cone with generalised tilt?

            Color the edges and diagonals of a regular polygon

            Relationship between determinant of matrix and determinant of adjoint?