Trying to Understand $E[X^2]$ for Gamma Distribution

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












I am trying to understand the following for the gamma distribution:



$$E[X^2] = frac alpha(alpha+1)lambda^2$$



I've been looking at the reasoning for $E[X]$ to make sense of what could be happening, for instance:



$$E[X] = int_0^inftyfraclambda^alphaGamma(alpha)xcdot x^alpha-1e^-lambda xdx$$
$$=fraclambda^alphaGamma(alpha)int_0^inftyx^alpha-1+1e^-lambda xdx $$
$$=fraclambda^alphaGamma(alpha)cdot fracGamma(alpha+1)lambda^alpha+1 = fracalphalambda$$



I can't make sense of what is happening to the second line where the integral drops out to become $$int_0^inftyx^alpha-1+1e^-lambda xdx =fracGamma(alpha+1)lambda^alpha+1$$
I figure understanding this point would help with understanding the reasoning behind $E[X^2]$.



Thank you!







share|cite|improve this question















  • 2




    suggest you check the definition of a gamma function.
    – John Polcari
    Jul 19 at 13:25










  • It's also the laplace transform of the function $f(t)=t^alpha$
    – Isham
    Jul 19 at 13:36















up vote
0
down vote

favorite












I am trying to understand the following for the gamma distribution:



$$E[X^2] = frac alpha(alpha+1)lambda^2$$



I've been looking at the reasoning for $E[X]$ to make sense of what could be happening, for instance:



$$E[X] = int_0^inftyfraclambda^alphaGamma(alpha)xcdot x^alpha-1e^-lambda xdx$$
$$=fraclambda^alphaGamma(alpha)int_0^inftyx^alpha-1+1e^-lambda xdx $$
$$=fraclambda^alphaGamma(alpha)cdot fracGamma(alpha+1)lambda^alpha+1 = fracalphalambda$$



I can't make sense of what is happening to the second line where the integral drops out to become $$int_0^inftyx^alpha-1+1e^-lambda xdx =fracGamma(alpha+1)lambda^alpha+1$$
I figure understanding this point would help with understanding the reasoning behind $E[X^2]$.



Thank you!







share|cite|improve this question















  • 2




    suggest you check the definition of a gamma function.
    – John Polcari
    Jul 19 at 13:25










  • It's also the laplace transform of the function $f(t)=t^alpha$
    – Isham
    Jul 19 at 13:36













up vote
0
down vote

favorite









up vote
0
down vote

favorite











I am trying to understand the following for the gamma distribution:



$$E[X^2] = frac alpha(alpha+1)lambda^2$$



I've been looking at the reasoning for $E[X]$ to make sense of what could be happening, for instance:



$$E[X] = int_0^inftyfraclambda^alphaGamma(alpha)xcdot x^alpha-1e^-lambda xdx$$
$$=fraclambda^alphaGamma(alpha)int_0^inftyx^alpha-1+1e^-lambda xdx $$
$$=fraclambda^alphaGamma(alpha)cdot fracGamma(alpha+1)lambda^alpha+1 = fracalphalambda$$



I can't make sense of what is happening to the second line where the integral drops out to become $$int_0^inftyx^alpha-1+1e^-lambda xdx =fracGamma(alpha+1)lambda^alpha+1$$
I figure understanding this point would help with understanding the reasoning behind $E[X^2]$.



Thank you!







share|cite|improve this question











I am trying to understand the following for the gamma distribution:



$$E[X^2] = frac alpha(alpha+1)lambda^2$$



I've been looking at the reasoning for $E[X]$ to make sense of what could be happening, for instance:



$$E[X] = int_0^inftyfraclambda^alphaGamma(alpha)xcdot x^alpha-1e^-lambda xdx$$
$$=fraclambda^alphaGamma(alpha)int_0^inftyx^alpha-1+1e^-lambda xdx $$
$$=fraclambda^alphaGamma(alpha)cdot fracGamma(alpha+1)lambda^alpha+1 = fracalphalambda$$



I can't make sense of what is happening to the second line where the integral drops out to become $$int_0^inftyx^alpha-1+1e^-lambda xdx =fracGamma(alpha+1)lambda^alpha+1$$
I figure understanding this point would help with understanding the reasoning behind $E[X^2]$.



Thank you!









share|cite|improve this question










share|cite|improve this question




share|cite|improve this question









asked Jul 19 at 13:22









M. Damon

132




132







  • 2




    suggest you check the definition of a gamma function.
    – John Polcari
    Jul 19 at 13:25










  • It's also the laplace transform of the function $f(t)=t^alpha$
    – Isham
    Jul 19 at 13:36













  • 2




    suggest you check the definition of a gamma function.
    – John Polcari
    Jul 19 at 13:25










  • It's also the laplace transform of the function $f(t)=t^alpha$
    – Isham
    Jul 19 at 13:36








2




2




suggest you check the definition of a gamma function.
– John Polcari
Jul 19 at 13:25




suggest you check the definition of a gamma function.
– John Polcari
Jul 19 at 13:25












It's also the laplace transform of the function $f(t)=t^alpha$
– Isham
Jul 19 at 13:36





It's also the laplace transform of the function $f(t)=t^alpha$
– Isham
Jul 19 at 13:36











2 Answers
2






active

oldest

votes

















up vote
2
down vote













HINT:



The gamma function is defined as $$Gamma(t)=int_0^infty x^t-1e^-x,dx$$ so let $u=lambda x$ and $t=alpha+1$.






share|cite|improve this answer




























    up vote
    2
    down vote













    $$E[X] = int_0^inftyfraclambda^alphaGamma(alpha)xcdot x^alpha-1e^-lambda xdx$$
    $$=fraclambda^alphaGamma(alpha)int_0^inftyx^alpha-1+1e^-lambda xdx = fraclambda^alphaGamma(alpha) fraclambda^a+1Gamma(a+1)lambda^a+1Gamma(a+1)int_0^inftyx^alpha-1+1e^-lambda xdx = $$
    $$=fraclambda^alphaGamma(alpha)cdot fracGamma(alpha+1)lambda^alpha+1 int_0^infty frac1Gamma(a+1) (lambda x) ^a+1 e^-lambda xfracdxx = fraclambda^alphaGamma(alpha)cdot fracGamma(alpha+1)lambda^alpha+1 times 1 = fracalambda$$
    because $f(x) = frac1Gamma(a+1) (lambda x) ^a+1 e^-lambda xfrac1x$ is a PDF of $X sim Gamma(a+1, lambda)$






    share|cite|improve this answer























      Your Answer




      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: false,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );








       

      draft saved


      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2856618%2ftrying-to-understand-ex2-for-gamma-distribution%23new-answer', 'question_page');

      );

      Post as a guest






























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      2
      down vote













      HINT:



      The gamma function is defined as $$Gamma(t)=int_0^infty x^t-1e^-x,dx$$ so let $u=lambda x$ and $t=alpha+1$.






      share|cite|improve this answer

























        up vote
        2
        down vote













        HINT:



        The gamma function is defined as $$Gamma(t)=int_0^infty x^t-1e^-x,dx$$ so let $u=lambda x$ and $t=alpha+1$.






        share|cite|improve this answer























          up vote
          2
          down vote










          up vote
          2
          down vote









          HINT:



          The gamma function is defined as $$Gamma(t)=int_0^infty x^t-1e^-x,dx$$ so let $u=lambda x$ and $t=alpha+1$.






          share|cite|improve this answer













          HINT:



          The gamma function is defined as $$Gamma(t)=int_0^infty x^t-1e^-x,dx$$ so let $u=lambda x$ and $t=alpha+1$.







          share|cite|improve this answer













          share|cite|improve this answer



          share|cite|improve this answer











          answered Jul 19 at 13:27









          TheSimpliFire

          9,67461951




          9,67461951




















              up vote
              2
              down vote













              $$E[X] = int_0^inftyfraclambda^alphaGamma(alpha)xcdot x^alpha-1e^-lambda xdx$$
              $$=fraclambda^alphaGamma(alpha)int_0^inftyx^alpha-1+1e^-lambda xdx = fraclambda^alphaGamma(alpha) fraclambda^a+1Gamma(a+1)lambda^a+1Gamma(a+1)int_0^inftyx^alpha-1+1e^-lambda xdx = $$
              $$=fraclambda^alphaGamma(alpha)cdot fracGamma(alpha+1)lambda^alpha+1 int_0^infty frac1Gamma(a+1) (lambda x) ^a+1 e^-lambda xfracdxx = fraclambda^alphaGamma(alpha)cdot fracGamma(alpha+1)lambda^alpha+1 times 1 = fracalambda$$
              because $f(x) = frac1Gamma(a+1) (lambda x) ^a+1 e^-lambda xfrac1x$ is a PDF of $X sim Gamma(a+1, lambda)$






              share|cite|improve this answer



























                up vote
                2
                down vote













                $$E[X] = int_0^inftyfraclambda^alphaGamma(alpha)xcdot x^alpha-1e^-lambda xdx$$
                $$=fraclambda^alphaGamma(alpha)int_0^inftyx^alpha-1+1e^-lambda xdx = fraclambda^alphaGamma(alpha) fraclambda^a+1Gamma(a+1)lambda^a+1Gamma(a+1)int_0^inftyx^alpha-1+1e^-lambda xdx = $$
                $$=fraclambda^alphaGamma(alpha)cdot fracGamma(alpha+1)lambda^alpha+1 int_0^infty frac1Gamma(a+1) (lambda x) ^a+1 e^-lambda xfracdxx = fraclambda^alphaGamma(alpha)cdot fracGamma(alpha+1)lambda^alpha+1 times 1 = fracalambda$$
                because $f(x) = frac1Gamma(a+1) (lambda x) ^a+1 e^-lambda xfrac1x$ is a PDF of $X sim Gamma(a+1, lambda)$






                share|cite|improve this answer

























                  up vote
                  2
                  down vote










                  up vote
                  2
                  down vote









                  $$E[X] = int_0^inftyfraclambda^alphaGamma(alpha)xcdot x^alpha-1e^-lambda xdx$$
                  $$=fraclambda^alphaGamma(alpha)int_0^inftyx^alpha-1+1e^-lambda xdx = fraclambda^alphaGamma(alpha) fraclambda^a+1Gamma(a+1)lambda^a+1Gamma(a+1)int_0^inftyx^alpha-1+1e^-lambda xdx = $$
                  $$=fraclambda^alphaGamma(alpha)cdot fracGamma(alpha+1)lambda^alpha+1 int_0^infty frac1Gamma(a+1) (lambda x) ^a+1 e^-lambda xfracdxx = fraclambda^alphaGamma(alpha)cdot fracGamma(alpha+1)lambda^alpha+1 times 1 = fracalambda$$
                  because $f(x) = frac1Gamma(a+1) (lambda x) ^a+1 e^-lambda xfrac1x$ is a PDF of $X sim Gamma(a+1, lambda)$






                  share|cite|improve this answer















                  $$E[X] = int_0^inftyfraclambda^alphaGamma(alpha)xcdot x^alpha-1e^-lambda xdx$$
                  $$=fraclambda^alphaGamma(alpha)int_0^inftyx^alpha-1+1e^-lambda xdx = fraclambda^alphaGamma(alpha) fraclambda^a+1Gamma(a+1)lambda^a+1Gamma(a+1)int_0^inftyx^alpha-1+1e^-lambda xdx = $$
                  $$=fraclambda^alphaGamma(alpha)cdot fracGamma(alpha+1)lambda^alpha+1 int_0^infty frac1Gamma(a+1) (lambda x) ^a+1 e^-lambda xfracdxx = fraclambda^alphaGamma(alpha)cdot fracGamma(alpha+1)lambda^alpha+1 times 1 = fracalambda$$
                  because $f(x) = frac1Gamma(a+1) (lambda x) ^a+1 e^-lambda xfrac1x$ is a PDF of $X sim Gamma(a+1, lambda)$







                  share|cite|improve this answer















                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jul 19 at 13:42


























                  answered Jul 19 at 13:40









                  D F

                  1,0551218




                  1,0551218






















                       

                      draft saved


                      draft discarded


























                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2856618%2ftrying-to-understand-ex2-for-gamma-distribution%23new-answer', 'question_page');

                      );

                      Post as a guest













































































                      Comments

                      Popular posts from this blog

                      What is the equation of a 3D cone with generalised tilt?

                      Color the edges and diagonals of a regular polygon

                      Relationship between determinant of matrix and determinant of adjoint?