Trying to Understand $E[X^2]$ for Gamma Distribution
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
I am trying to understand the following for the gamma distribution:
$$E[X^2] = frac alpha(alpha+1)lambda^2$$
I've been looking at the reasoning for $E[X]$ to make sense of what could be happening, for instance:
$$E[X] = int_0^inftyfraclambda^alphaGamma(alpha)xcdot x^alpha-1e^-lambda xdx$$
$$=fraclambda^alphaGamma(alpha)int_0^inftyx^alpha-1+1e^-lambda xdx $$
$$=fraclambda^alphaGamma(alpha)cdot fracGamma(alpha+1)lambda^alpha+1 = fracalphalambda$$
I can't make sense of what is happening to the second line where the integral drops out to become $$int_0^inftyx^alpha-1+1e^-lambda xdx =fracGamma(alpha+1)lambda^alpha+1$$
I figure understanding this point would help with understanding the reasoning behind $E[X^2]$.
Thank you!
probability expectation gamma-function gamma-distribution
add a comment |Â
up vote
0
down vote
favorite
I am trying to understand the following for the gamma distribution:
$$E[X^2] = frac alpha(alpha+1)lambda^2$$
I've been looking at the reasoning for $E[X]$ to make sense of what could be happening, for instance:
$$E[X] = int_0^inftyfraclambda^alphaGamma(alpha)xcdot x^alpha-1e^-lambda xdx$$
$$=fraclambda^alphaGamma(alpha)int_0^inftyx^alpha-1+1e^-lambda xdx $$
$$=fraclambda^alphaGamma(alpha)cdot fracGamma(alpha+1)lambda^alpha+1 = fracalphalambda$$
I can't make sense of what is happening to the second line where the integral drops out to become $$int_0^inftyx^alpha-1+1e^-lambda xdx =fracGamma(alpha+1)lambda^alpha+1$$
I figure understanding this point would help with understanding the reasoning behind $E[X^2]$.
Thank you!
probability expectation gamma-function gamma-distribution
2
suggest you check the definition of a gamma function.
– John Polcari
Jul 19 at 13:25
It's also the laplace transform of the function $f(t)=t^alpha$
– Isham
Jul 19 at 13:36
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I am trying to understand the following for the gamma distribution:
$$E[X^2] = frac alpha(alpha+1)lambda^2$$
I've been looking at the reasoning for $E[X]$ to make sense of what could be happening, for instance:
$$E[X] = int_0^inftyfraclambda^alphaGamma(alpha)xcdot x^alpha-1e^-lambda xdx$$
$$=fraclambda^alphaGamma(alpha)int_0^inftyx^alpha-1+1e^-lambda xdx $$
$$=fraclambda^alphaGamma(alpha)cdot fracGamma(alpha+1)lambda^alpha+1 = fracalphalambda$$
I can't make sense of what is happening to the second line where the integral drops out to become $$int_0^inftyx^alpha-1+1e^-lambda xdx =fracGamma(alpha+1)lambda^alpha+1$$
I figure understanding this point would help with understanding the reasoning behind $E[X^2]$.
Thank you!
probability expectation gamma-function gamma-distribution
I am trying to understand the following for the gamma distribution:
$$E[X^2] = frac alpha(alpha+1)lambda^2$$
I've been looking at the reasoning for $E[X]$ to make sense of what could be happening, for instance:
$$E[X] = int_0^inftyfraclambda^alphaGamma(alpha)xcdot x^alpha-1e^-lambda xdx$$
$$=fraclambda^alphaGamma(alpha)int_0^inftyx^alpha-1+1e^-lambda xdx $$
$$=fraclambda^alphaGamma(alpha)cdot fracGamma(alpha+1)lambda^alpha+1 = fracalphalambda$$
I can't make sense of what is happening to the second line where the integral drops out to become $$int_0^inftyx^alpha-1+1e^-lambda xdx =fracGamma(alpha+1)lambda^alpha+1$$
I figure understanding this point would help with understanding the reasoning behind $E[X^2]$.
Thank you!
probability expectation gamma-function gamma-distribution
asked Jul 19 at 13:22
M. Damon
132
132
2
suggest you check the definition of a gamma function.
– John Polcari
Jul 19 at 13:25
It's also the laplace transform of the function $f(t)=t^alpha$
– Isham
Jul 19 at 13:36
add a comment |Â
2
suggest you check the definition of a gamma function.
– John Polcari
Jul 19 at 13:25
It's also the laplace transform of the function $f(t)=t^alpha$
– Isham
Jul 19 at 13:36
2
2
suggest you check the definition of a gamma function.
– John Polcari
Jul 19 at 13:25
suggest you check the definition of a gamma function.
– John Polcari
Jul 19 at 13:25
It's also the laplace transform of the function $f(t)=t^alpha$
– Isham
Jul 19 at 13:36
It's also the laplace transform of the function $f(t)=t^alpha$
– Isham
Jul 19 at 13:36
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
2
down vote
HINT:
The gamma function is defined as $$Gamma(t)=int_0^infty x^t-1e^-x,dx$$ so let $u=lambda x$ and $t=alpha+1$.
add a comment |Â
up vote
2
down vote
$$E[X] = int_0^inftyfraclambda^alphaGamma(alpha)xcdot x^alpha-1e^-lambda xdx$$
$$=fraclambda^alphaGamma(alpha)int_0^inftyx^alpha-1+1e^-lambda xdx = fraclambda^alphaGamma(alpha) fraclambda^a+1Gamma(a+1)lambda^a+1Gamma(a+1)int_0^inftyx^alpha-1+1e^-lambda xdx = $$
$$=fraclambda^alphaGamma(alpha)cdot fracGamma(alpha+1)lambda^alpha+1 int_0^infty frac1Gamma(a+1) (lambda x) ^a+1 e^-lambda xfracdxx = fraclambda^alphaGamma(alpha)cdot fracGamma(alpha+1)lambda^alpha+1 times 1 = fracalambda$$
because $f(x) = frac1Gamma(a+1) (lambda x) ^a+1 e^-lambda xfrac1x$ is a PDF of $X sim Gamma(a+1, lambda)$
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
HINT:
The gamma function is defined as $$Gamma(t)=int_0^infty x^t-1e^-x,dx$$ so let $u=lambda x$ and $t=alpha+1$.
add a comment |Â
up vote
2
down vote
HINT:
The gamma function is defined as $$Gamma(t)=int_0^infty x^t-1e^-x,dx$$ so let $u=lambda x$ and $t=alpha+1$.
add a comment |Â
up vote
2
down vote
up vote
2
down vote
HINT:
The gamma function is defined as $$Gamma(t)=int_0^infty x^t-1e^-x,dx$$ so let $u=lambda x$ and $t=alpha+1$.
HINT:
The gamma function is defined as $$Gamma(t)=int_0^infty x^t-1e^-x,dx$$ so let $u=lambda x$ and $t=alpha+1$.
answered Jul 19 at 13:27
TheSimpliFire
9,67461951
9,67461951
add a comment |Â
add a comment |Â
up vote
2
down vote
$$E[X] = int_0^inftyfraclambda^alphaGamma(alpha)xcdot x^alpha-1e^-lambda xdx$$
$$=fraclambda^alphaGamma(alpha)int_0^inftyx^alpha-1+1e^-lambda xdx = fraclambda^alphaGamma(alpha) fraclambda^a+1Gamma(a+1)lambda^a+1Gamma(a+1)int_0^inftyx^alpha-1+1e^-lambda xdx = $$
$$=fraclambda^alphaGamma(alpha)cdot fracGamma(alpha+1)lambda^alpha+1 int_0^infty frac1Gamma(a+1) (lambda x) ^a+1 e^-lambda xfracdxx = fraclambda^alphaGamma(alpha)cdot fracGamma(alpha+1)lambda^alpha+1 times 1 = fracalambda$$
because $f(x) = frac1Gamma(a+1) (lambda x) ^a+1 e^-lambda xfrac1x$ is a PDF of $X sim Gamma(a+1, lambda)$
add a comment |Â
up vote
2
down vote
$$E[X] = int_0^inftyfraclambda^alphaGamma(alpha)xcdot x^alpha-1e^-lambda xdx$$
$$=fraclambda^alphaGamma(alpha)int_0^inftyx^alpha-1+1e^-lambda xdx = fraclambda^alphaGamma(alpha) fraclambda^a+1Gamma(a+1)lambda^a+1Gamma(a+1)int_0^inftyx^alpha-1+1e^-lambda xdx = $$
$$=fraclambda^alphaGamma(alpha)cdot fracGamma(alpha+1)lambda^alpha+1 int_0^infty frac1Gamma(a+1) (lambda x) ^a+1 e^-lambda xfracdxx = fraclambda^alphaGamma(alpha)cdot fracGamma(alpha+1)lambda^alpha+1 times 1 = fracalambda$$
because $f(x) = frac1Gamma(a+1) (lambda x) ^a+1 e^-lambda xfrac1x$ is a PDF of $X sim Gamma(a+1, lambda)$
add a comment |Â
up vote
2
down vote
up vote
2
down vote
$$E[X] = int_0^inftyfraclambda^alphaGamma(alpha)xcdot x^alpha-1e^-lambda xdx$$
$$=fraclambda^alphaGamma(alpha)int_0^inftyx^alpha-1+1e^-lambda xdx = fraclambda^alphaGamma(alpha) fraclambda^a+1Gamma(a+1)lambda^a+1Gamma(a+1)int_0^inftyx^alpha-1+1e^-lambda xdx = $$
$$=fraclambda^alphaGamma(alpha)cdot fracGamma(alpha+1)lambda^alpha+1 int_0^infty frac1Gamma(a+1) (lambda x) ^a+1 e^-lambda xfracdxx = fraclambda^alphaGamma(alpha)cdot fracGamma(alpha+1)lambda^alpha+1 times 1 = fracalambda$$
because $f(x) = frac1Gamma(a+1) (lambda x) ^a+1 e^-lambda xfrac1x$ is a PDF of $X sim Gamma(a+1, lambda)$
$$E[X] = int_0^inftyfraclambda^alphaGamma(alpha)xcdot x^alpha-1e^-lambda xdx$$
$$=fraclambda^alphaGamma(alpha)int_0^inftyx^alpha-1+1e^-lambda xdx = fraclambda^alphaGamma(alpha) fraclambda^a+1Gamma(a+1)lambda^a+1Gamma(a+1)int_0^inftyx^alpha-1+1e^-lambda xdx = $$
$$=fraclambda^alphaGamma(alpha)cdot fracGamma(alpha+1)lambda^alpha+1 int_0^infty frac1Gamma(a+1) (lambda x) ^a+1 e^-lambda xfracdxx = fraclambda^alphaGamma(alpha)cdot fracGamma(alpha+1)lambda^alpha+1 times 1 = fracalambda$$
because $f(x) = frac1Gamma(a+1) (lambda x) ^a+1 e^-lambda xfrac1x$ is a PDF of $X sim Gamma(a+1, lambda)$
edited Jul 19 at 13:42
answered Jul 19 at 13:40
D F
1,0551218
1,0551218
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2856618%2ftrying-to-understand-ex2-for-gamma-distribution%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
2
suggest you check the definition of a gamma function.
– John Polcari
Jul 19 at 13:25
It's also the laplace transform of the function $f(t)=t^alpha$
– Isham
Jul 19 at 13:36