$[1+(frac1+i2)][1+(frac1+i2)^2][1+(frac1+i2)^2^2]â¦[1+(frac1+i2)^2^n]=(1-frac12^2^n)(1+i)$,where $nge 2$
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
Show that $$!!!left[1+left(frac1+i2right)right]!!!left[1+left(frac1+i2right)^2right]!!!left[1+left(frac1+i2right)^2^2right]cdotsleft[1+left(frac1+i2right)^2^nright]!!!=left(1-frac12^2^nright)(1+i)$$ for $nge 2$.
I took $frac1+i2=frac1sqrt2e^ifracpi4$ and tried solving but i could not reach the RHS.Please help.
algebra-precalculus complex-numbers
add a comment |Â
up vote
3
down vote
favorite
Show that $$!!!left[1+left(frac1+i2right)right]!!!left[1+left(frac1+i2right)^2right]!!!left[1+left(frac1+i2right)^2^2right]cdotsleft[1+left(frac1+i2right)^2^nright]!!!=left(1-frac12^2^nright)(1+i)$$ for $nge 2$.
I took $frac1+i2=frac1sqrt2e^ifracpi4$ and tried solving but i could not reach the RHS.Please help.
algebra-precalculus complex-numbers
Thank you,all three answers are helpful.
â learner_avid
Jul 30 at 8:22
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
Show that $$!!!left[1+left(frac1+i2right)right]!!!left[1+left(frac1+i2right)^2right]!!!left[1+left(frac1+i2right)^2^2right]cdotsleft[1+left(frac1+i2right)^2^nright]!!!=left(1-frac12^2^nright)(1+i)$$ for $nge 2$.
I took $frac1+i2=frac1sqrt2e^ifracpi4$ and tried solving but i could not reach the RHS.Please help.
algebra-precalculus complex-numbers
Show that $$!!!left[1+left(frac1+i2right)right]!!!left[1+left(frac1+i2right)^2right]!!!left[1+left(frac1+i2right)^2^2right]cdotsleft[1+left(frac1+i2right)^2^nright]!!!=left(1-frac12^2^nright)(1+i)$$ for $nge 2$.
I took $frac1+i2=frac1sqrt2e^ifracpi4$ and tried solving but i could not reach the RHS.Please help.
algebra-precalculus complex-numbers
edited Jul 30 at 6:05
Math Lover
12.3k21232
12.3k21232
asked Jul 30 at 4:57
learner_avid
687213
687213
Thank you,all three answers are helpful.
â learner_avid
Jul 30 at 8:22
add a comment |Â
Thank you,all three answers are helpful.
â learner_avid
Jul 30 at 8:22
Thank you,all three answers are helpful.
â learner_avid
Jul 30 at 8:22
Thank you,all three answers are helpful.
â learner_avid
Jul 30 at 8:22
add a comment |Â
4 Answers
4
active
oldest
votes
up vote
2
down vote
accepted
Hints:
$(1-a) cdot (1+a) = 1 - a^2,$, $,(1-a) cdot (1+a)(1+a^2) = 1 - a^4,$, $;ldots$
$(1+i)^2 = 2i$
$1 - dfrac1+i2=dfrac1-i2 = dfrac11+i$
add a comment |Â
up vote
2
down vote
Notice that, for any $x neq 1,$
beginalign*
prod_k=0^n(1+x^2^k)&=(1+x)(1+x^2)(1+x^2^2)cdots(1+x^2^n)\&=frac(1-x)(1+x)(1+x^2)(1+x^2^2)cdots(1+x^2^n)1-x\&=frac(1-x^2)(1+x^2)(1+x^2^2)cdots(1+x^2^n)1-x\&vdots\&=frac1-x^2^n+11-x.
endalign*
Thus, beginalign*prod_k=0^nleft[1+left(frac1+i2right)^2^kright]&=frac1-left(dfrac1+i2right)^2^n+11-dfrac1+i2=frac1-left[left(dfrac1+i2right)^2right]^2^ndfrac11+i\&=left[1-left(fraci2right)^2^nright](1+i)\&=left(1-frac12^2^nright)(1+i).endalign*
add a comment |Â
up vote
1
down vote
Hint: Use mathematical induction. Also, for $n > 2$, $$left(frac1+i2right)^2^n = frac12^2^n-1,$$
and
$$left(1-frac12^2^n-1right)left(1+frac12^2^n-1right)=1-frac12^2^n.$$
add a comment |Â
up vote
1
down vote
Hint: Use the general case
$$(1+x)(1+x^2)(1+x^4)cdots(1+x^2^n)=dfrac(1-x^2^n+1)1-x$$
add a comment |Â
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
Hints:
$(1-a) cdot (1+a) = 1 - a^2,$, $,(1-a) cdot (1+a)(1+a^2) = 1 - a^4,$, $;ldots$
$(1+i)^2 = 2i$
$1 - dfrac1+i2=dfrac1-i2 = dfrac11+i$
add a comment |Â
up vote
2
down vote
accepted
Hints:
$(1-a) cdot (1+a) = 1 - a^2,$, $,(1-a) cdot (1+a)(1+a^2) = 1 - a^4,$, $;ldots$
$(1+i)^2 = 2i$
$1 - dfrac1+i2=dfrac1-i2 = dfrac11+i$
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
Hints:
$(1-a) cdot (1+a) = 1 - a^2,$, $,(1-a) cdot (1+a)(1+a^2) = 1 - a^4,$, $;ldots$
$(1+i)^2 = 2i$
$1 - dfrac1+i2=dfrac1-i2 = dfrac11+i$
Hints:
$(1-a) cdot (1+a) = 1 - a^2,$, $,(1-a) cdot (1+a)(1+a^2) = 1 - a^4,$, $;ldots$
$(1+i)^2 = 2i$
$1 - dfrac1+i2=dfrac1-i2 = dfrac11+i$
answered Jul 30 at 5:06
dxiv
53.8k64796
53.8k64796
add a comment |Â
add a comment |Â
up vote
2
down vote
Notice that, for any $x neq 1,$
beginalign*
prod_k=0^n(1+x^2^k)&=(1+x)(1+x^2)(1+x^2^2)cdots(1+x^2^n)\&=frac(1-x)(1+x)(1+x^2)(1+x^2^2)cdots(1+x^2^n)1-x\&=frac(1-x^2)(1+x^2)(1+x^2^2)cdots(1+x^2^n)1-x\&vdots\&=frac1-x^2^n+11-x.
endalign*
Thus, beginalign*prod_k=0^nleft[1+left(frac1+i2right)^2^kright]&=frac1-left(dfrac1+i2right)^2^n+11-dfrac1+i2=frac1-left[left(dfrac1+i2right)^2right]^2^ndfrac11+i\&=left[1-left(fraci2right)^2^nright](1+i)\&=left(1-frac12^2^nright)(1+i).endalign*
add a comment |Â
up vote
2
down vote
Notice that, for any $x neq 1,$
beginalign*
prod_k=0^n(1+x^2^k)&=(1+x)(1+x^2)(1+x^2^2)cdots(1+x^2^n)\&=frac(1-x)(1+x)(1+x^2)(1+x^2^2)cdots(1+x^2^n)1-x\&=frac(1-x^2)(1+x^2)(1+x^2^2)cdots(1+x^2^n)1-x\&vdots\&=frac1-x^2^n+11-x.
endalign*
Thus, beginalign*prod_k=0^nleft[1+left(frac1+i2right)^2^kright]&=frac1-left(dfrac1+i2right)^2^n+11-dfrac1+i2=frac1-left[left(dfrac1+i2right)^2right]^2^ndfrac11+i\&=left[1-left(fraci2right)^2^nright](1+i)\&=left(1-frac12^2^nright)(1+i).endalign*
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Notice that, for any $x neq 1,$
beginalign*
prod_k=0^n(1+x^2^k)&=(1+x)(1+x^2)(1+x^2^2)cdots(1+x^2^n)\&=frac(1-x)(1+x)(1+x^2)(1+x^2^2)cdots(1+x^2^n)1-x\&=frac(1-x^2)(1+x^2)(1+x^2^2)cdots(1+x^2^n)1-x\&vdots\&=frac1-x^2^n+11-x.
endalign*
Thus, beginalign*prod_k=0^nleft[1+left(frac1+i2right)^2^kright]&=frac1-left(dfrac1+i2right)^2^n+11-dfrac1+i2=frac1-left[left(dfrac1+i2right)^2right]^2^ndfrac11+i\&=left[1-left(fraci2right)^2^nright](1+i)\&=left(1-frac12^2^nright)(1+i).endalign*
Notice that, for any $x neq 1,$
beginalign*
prod_k=0^n(1+x^2^k)&=(1+x)(1+x^2)(1+x^2^2)cdots(1+x^2^n)\&=frac(1-x)(1+x)(1+x^2)(1+x^2^2)cdots(1+x^2^n)1-x\&=frac(1-x^2)(1+x^2)(1+x^2^2)cdots(1+x^2^n)1-x\&vdots\&=frac1-x^2^n+11-x.
endalign*
Thus, beginalign*prod_k=0^nleft[1+left(frac1+i2right)^2^kright]&=frac1-left(dfrac1+i2right)^2^n+11-dfrac1+i2=frac1-left[left(dfrac1+i2right)^2right]^2^ndfrac11+i\&=left[1-left(fraci2right)^2^nright](1+i)\&=left(1-frac12^2^nright)(1+i).endalign*
edited Jul 30 at 11:30
answered Jul 30 at 9:06
mengdie1982
2,827216
2,827216
add a comment |Â
add a comment |Â
up vote
1
down vote
Hint: Use mathematical induction. Also, for $n > 2$, $$left(frac1+i2right)^2^n = frac12^2^n-1,$$
and
$$left(1-frac12^2^n-1right)left(1+frac12^2^n-1right)=1-frac12^2^n.$$
add a comment |Â
up vote
1
down vote
Hint: Use mathematical induction. Also, for $n > 2$, $$left(frac1+i2right)^2^n = frac12^2^n-1,$$
and
$$left(1-frac12^2^n-1right)left(1+frac12^2^n-1right)=1-frac12^2^n.$$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Hint: Use mathematical induction. Also, for $n > 2$, $$left(frac1+i2right)^2^n = frac12^2^n-1,$$
and
$$left(1-frac12^2^n-1right)left(1+frac12^2^n-1right)=1-frac12^2^n.$$
Hint: Use mathematical induction. Also, for $n > 2$, $$left(frac1+i2right)^2^n = frac12^2^n-1,$$
and
$$left(1-frac12^2^n-1right)left(1+frac12^2^n-1right)=1-frac12^2^n.$$
answered Jul 30 at 5:12
Math Lover
12.3k21232
12.3k21232
add a comment |Â
add a comment |Â
up vote
1
down vote
Hint: Use the general case
$$(1+x)(1+x^2)(1+x^4)cdots(1+x^2^n)=dfrac(1-x^2^n+1)1-x$$
add a comment |Â
up vote
1
down vote
Hint: Use the general case
$$(1+x)(1+x^2)(1+x^4)cdots(1+x^2^n)=dfrac(1-x^2^n+1)1-x$$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Hint: Use the general case
$$(1+x)(1+x^2)(1+x^4)cdots(1+x^2^n)=dfrac(1-x^2^n+1)1-x$$
Hint: Use the general case
$$(1+x)(1+x^2)(1+x^4)cdots(1+x^2^n)=dfrac(1-x^2^n+1)1-x$$
edited Jul 30 at 15:53
Math Lover
12.3k21232
12.3k21232
answered Jul 30 at 5:08
user 108128
19k41544
19k41544
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2866663%2f1-frac1i21-frac1i221-frac1i222-1-frac1%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Thank you,all three answers are helpful.
â learner_avid
Jul 30 at 8:22