$i_X(dxwedge dywedge dz) $ with $X=afracpartial partial x+bfracpartial partial y+cfracpartial partial z$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite
1












I can not understand the practical way to calculate the following:



Let $X=afracpartial partial x+bfracpartial partial y+cfracpartial partial z$
show that $dxwedge dywedge dz(X,v_1,v_2)=adywedge dz-bdxwedge dz+cdxwedge dy.$



I have this:
$i_X(dxwedge dywedge dz)(v_1,v_2)=dxwedge dywedge dz(X,v_1,v_2)=dx(X,v_1,v_2)wedge (dywedge dz)(X,v_1,v_2)\
=dx(X,v_1,v_2)wedge (dy(X)dz(v_1)-dy(v_1)dz(X)+dy(X)dz(v_2)-dy(v_2)dz(X)+dy(v_1)dz(v_2)-dy(v_2)dz(v_1))\
=[dx(v_2)dy(X)dz(v_1)-dx(v_2)dy(v_1)dz(X)]+[dx(v_1)dy(X)dz(v_2)-dx(v_1)dy(v_2)dz(X)+dx(v_2)dy(v_1)dz(v_2)-dx(X)dy(v_2)dz(v_1)]\
=[bdx(v_2)dz(v_1)-cdx(v_2)dy(v_1)]+[bdx(v_1)dz(v_2)-cdx(v_1)dy(v_2)+ady(v_1)dz(v_2)-ady(v_2)dz(v_1)]$



(The only term that gives me is $ady wedge dz$ the others do not fit me with the sign to form what I want.
How would it be? I do not handle this multiplication game well.







share|cite|improve this question

























    up vote
    1
    down vote

    favorite
    1












    I can not understand the practical way to calculate the following:



    Let $X=afracpartial partial x+bfracpartial partial y+cfracpartial partial z$
    show that $dxwedge dywedge dz(X,v_1,v_2)=adywedge dz-bdxwedge dz+cdxwedge dy.$



    I have this:
    $i_X(dxwedge dywedge dz)(v_1,v_2)=dxwedge dywedge dz(X,v_1,v_2)=dx(X,v_1,v_2)wedge (dywedge dz)(X,v_1,v_2)\
    =dx(X,v_1,v_2)wedge (dy(X)dz(v_1)-dy(v_1)dz(X)+dy(X)dz(v_2)-dy(v_2)dz(X)+dy(v_1)dz(v_2)-dy(v_2)dz(v_1))\
    =[dx(v_2)dy(X)dz(v_1)-dx(v_2)dy(v_1)dz(X)]+[dx(v_1)dy(X)dz(v_2)-dx(v_1)dy(v_2)dz(X)+dx(v_2)dy(v_1)dz(v_2)-dx(X)dy(v_2)dz(v_1)]\
    =[bdx(v_2)dz(v_1)-cdx(v_2)dy(v_1)]+[bdx(v_1)dz(v_2)-cdx(v_1)dy(v_2)+ady(v_1)dz(v_2)-ady(v_2)dz(v_1)]$



    (The only term that gives me is $ady wedge dz$ the others do not fit me with the sign to form what I want.
    How would it be? I do not handle this multiplication game well.







    share|cite|improve this question























      up vote
      1
      down vote

      favorite
      1









      up vote
      1
      down vote

      favorite
      1






      1





      I can not understand the practical way to calculate the following:



      Let $X=afracpartial partial x+bfracpartial partial y+cfracpartial partial z$
      show that $dxwedge dywedge dz(X,v_1,v_2)=adywedge dz-bdxwedge dz+cdxwedge dy.$



      I have this:
      $i_X(dxwedge dywedge dz)(v_1,v_2)=dxwedge dywedge dz(X,v_1,v_2)=dx(X,v_1,v_2)wedge (dywedge dz)(X,v_1,v_2)\
      =dx(X,v_1,v_2)wedge (dy(X)dz(v_1)-dy(v_1)dz(X)+dy(X)dz(v_2)-dy(v_2)dz(X)+dy(v_1)dz(v_2)-dy(v_2)dz(v_1))\
      =[dx(v_2)dy(X)dz(v_1)-dx(v_2)dy(v_1)dz(X)]+[dx(v_1)dy(X)dz(v_2)-dx(v_1)dy(v_2)dz(X)+dx(v_2)dy(v_1)dz(v_2)-dx(X)dy(v_2)dz(v_1)]\
      =[bdx(v_2)dz(v_1)-cdx(v_2)dy(v_1)]+[bdx(v_1)dz(v_2)-cdx(v_1)dy(v_2)+ady(v_1)dz(v_2)-ady(v_2)dz(v_1)]$



      (The only term that gives me is $ady wedge dz$ the others do not fit me with the sign to form what I want.
      How would it be? I do not handle this multiplication game well.







      share|cite|improve this question













      I can not understand the practical way to calculate the following:



      Let $X=afracpartial partial x+bfracpartial partial y+cfracpartial partial z$
      show that $dxwedge dywedge dz(X,v_1,v_2)=adywedge dz-bdxwedge dz+cdxwedge dy.$



      I have this:
      $i_X(dxwedge dywedge dz)(v_1,v_2)=dxwedge dywedge dz(X,v_1,v_2)=dx(X,v_1,v_2)wedge (dywedge dz)(X,v_1,v_2)\
      =dx(X,v_1,v_2)wedge (dy(X)dz(v_1)-dy(v_1)dz(X)+dy(X)dz(v_2)-dy(v_2)dz(X)+dy(v_1)dz(v_2)-dy(v_2)dz(v_1))\
      =[dx(v_2)dy(X)dz(v_1)-dx(v_2)dy(v_1)dz(X)]+[dx(v_1)dy(X)dz(v_2)-dx(v_1)dy(v_2)dz(X)+dx(v_2)dy(v_1)dz(v_2)-dx(X)dy(v_2)dz(v_1)]\
      =[bdx(v_2)dz(v_1)-cdx(v_2)dy(v_1)]+[bdx(v_1)dz(v_2)-cdx(v_1)dy(v_2)+ady(v_1)dz(v_2)-ady(v_2)dz(v_1)]$



      (The only term that gives me is $ady wedge dz$ the others do not fit me with the sign to form what I want.
      How would it be? I do not handle this multiplication game well.









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Jul 30 at 6:27
























      asked Jul 30 at 6:14









      eraldcoil

      386




      386




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          Remember that
          $$beginalign
          dx wedge dy wedge dz
          & = dx otimes dy otimes dz
          + dy otimes dz otimes dx
          + dz otimes dx otimes dy \
          & - dx otimes dz otimes dy
          - dy otimes dx otimes dz
          - dz otimes dy otimes dx
          endalign$$



          Therefore,
          $$beginalign
          (dx wedge dy wedge dz)(X,Y,Z)
          & = dx(X) otimes dy(Y) otimes dz(Z)
          + dy(X) otimes dz(Y) otimes dx(Z) \
          & + dz(X) otimes dx(Y) otimes dy(Z)
          - dx(X) otimes dz(Y) otimes dy(Z) \
          & - dy(X) otimes dx(Y) otimes dz(Z)
          - dz(X) otimes dy(Y) otimes dx(Z)
          endalign$$



          In this case, $X = a partial_x + b partial_y + c partial_z,$ so
          $dx(X) = a, dy(X) = b, dz(X) = c,$ which gives
          $$beginalign
          (dx wedge dy wedge dz)(X,Y,Z)
          & = a dy(Y) otimes dz(Z)
          + b dz(Y) otimes dx(Z) \
          & + c dx(Y) otimes dy(Z)
          - a dz(Y) otimes dy(Z) \
          & - b dx(Y) otimes dz(Z)
          - c dy(Y) otimes dx(Z) \
          & = a (dy(Y) otimes dz(Z) - dz(Y) otimes dy(Z)) \
          & + b (dz(Y) otimes dx(Z) - dx(Y) otimes dz(Z)) \
          & + c (dx(Y) otimes dy(Z) - dy(Y) otimes dx(Z)) \
          & = a (dy wedge dz)(Y, Z) + b (dz wedge dx)(Y, Z) + c (dx wedge dy)(Y, Z) \
          & = (a , dy wedge dz + b , dz wedge dx + c , dx wedge dy)(Y, Z)
          endalign$$






          share|cite|improve this answer





















            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );








             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2866691%2fi-xdx-wedge-dy-wedge-dz-with-x-a-frac-partial-partial-xb-frac%23new-answer', 'question_page');

            );

            Post as a guest






























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            1
            down vote



            accepted










            Remember that
            $$beginalign
            dx wedge dy wedge dz
            & = dx otimes dy otimes dz
            + dy otimes dz otimes dx
            + dz otimes dx otimes dy \
            & - dx otimes dz otimes dy
            - dy otimes dx otimes dz
            - dz otimes dy otimes dx
            endalign$$



            Therefore,
            $$beginalign
            (dx wedge dy wedge dz)(X,Y,Z)
            & = dx(X) otimes dy(Y) otimes dz(Z)
            + dy(X) otimes dz(Y) otimes dx(Z) \
            & + dz(X) otimes dx(Y) otimes dy(Z)
            - dx(X) otimes dz(Y) otimes dy(Z) \
            & - dy(X) otimes dx(Y) otimes dz(Z)
            - dz(X) otimes dy(Y) otimes dx(Z)
            endalign$$



            In this case, $X = a partial_x + b partial_y + c partial_z,$ so
            $dx(X) = a, dy(X) = b, dz(X) = c,$ which gives
            $$beginalign
            (dx wedge dy wedge dz)(X,Y,Z)
            & = a dy(Y) otimes dz(Z)
            + b dz(Y) otimes dx(Z) \
            & + c dx(Y) otimes dy(Z)
            - a dz(Y) otimes dy(Z) \
            & - b dx(Y) otimes dz(Z)
            - c dy(Y) otimes dx(Z) \
            & = a (dy(Y) otimes dz(Z) - dz(Y) otimes dy(Z)) \
            & + b (dz(Y) otimes dx(Z) - dx(Y) otimes dz(Z)) \
            & + c (dx(Y) otimes dy(Z) - dy(Y) otimes dx(Z)) \
            & = a (dy wedge dz)(Y, Z) + b (dz wedge dx)(Y, Z) + c (dx wedge dy)(Y, Z) \
            & = (a , dy wedge dz + b , dz wedge dx + c , dx wedge dy)(Y, Z)
            endalign$$






            share|cite|improve this answer

























              up vote
              1
              down vote



              accepted










              Remember that
              $$beginalign
              dx wedge dy wedge dz
              & = dx otimes dy otimes dz
              + dy otimes dz otimes dx
              + dz otimes dx otimes dy \
              & - dx otimes dz otimes dy
              - dy otimes dx otimes dz
              - dz otimes dy otimes dx
              endalign$$



              Therefore,
              $$beginalign
              (dx wedge dy wedge dz)(X,Y,Z)
              & = dx(X) otimes dy(Y) otimes dz(Z)
              + dy(X) otimes dz(Y) otimes dx(Z) \
              & + dz(X) otimes dx(Y) otimes dy(Z)
              - dx(X) otimes dz(Y) otimes dy(Z) \
              & - dy(X) otimes dx(Y) otimes dz(Z)
              - dz(X) otimes dy(Y) otimes dx(Z)
              endalign$$



              In this case, $X = a partial_x + b partial_y + c partial_z,$ so
              $dx(X) = a, dy(X) = b, dz(X) = c,$ which gives
              $$beginalign
              (dx wedge dy wedge dz)(X,Y,Z)
              & = a dy(Y) otimes dz(Z)
              + b dz(Y) otimes dx(Z) \
              & + c dx(Y) otimes dy(Z)
              - a dz(Y) otimes dy(Z) \
              & - b dx(Y) otimes dz(Z)
              - c dy(Y) otimes dx(Z) \
              & = a (dy(Y) otimes dz(Z) - dz(Y) otimes dy(Z)) \
              & + b (dz(Y) otimes dx(Z) - dx(Y) otimes dz(Z)) \
              & + c (dx(Y) otimes dy(Z) - dy(Y) otimes dx(Z)) \
              & = a (dy wedge dz)(Y, Z) + b (dz wedge dx)(Y, Z) + c (dx wedge dy)(Y, Z) \
              & = (a , dy wedge dz + b , dz wedge dx + c , dx wedge dy)(Y, Z)
              endalign$$






              share|cite|improve this answer























                up vote
                1
                down vote



                accepted







                up vote
                1
                down vote



                accepted






                Remember that
                $$beginalign
                dx wedge dy wedge dz
                & = dx otimes dy otimes dz
                + dy otimes dz otimes dx
                + dz otimes dx otimes dy \
                & - dx otimes dz otimes dy
                - dy otimes dx otimes dz
                - dz otimes dy otimes dx
                endalign$$



                Therefore,
                $$beginalign
                (dx wedge dy wedge dz)(X,Y,Z)
                & = dx(X) otimes dy(Y) otimes dz(Z)
                + dy(X) otimes dz(Y) otimes dx(Z) \
                & + dz(X) otimes dx(Y) otimes dy(Z)
                - dx(X) otimes dz(Y) otimes dy(Z) \
                & - dy(X) otimes dx(Y) otimes dz(Z)
                - dz(X) otimes dy(Y) otimes dx(Z)
                endalign$$



                In this case, $X = a partial_x + b partial_y + c partial_z,$ so
                $dx(X) = a, dy(X) = b, dz(X) = c,$ which gives
                $$beginalign
                (dx wedge dy wedge dz)(X,Y,Z)
                & = a dy(Y) otimes dz(Z)
                + b dz(Y) otimes dx(Z) \
                & + c dx(Y) otimes dy(Z)
                - a dz(Y) otimes dy(Z) \
                & - b dx(Y) otimes dz(Z)
                - c dy(Y) otimes dx(Z) \
                & = a (dy(Y) otimes dz(Z) - dz(Y) otimes dy(Z)) \
                & + b (dz(Y) otimes dx(Z) - dx(Y) otimes dz(Z)) \
                & + c (dx(Y) otimes dy(Z) - dy(Y) otimes dx(Z)) \
                & = a (dy wedge dz)(Y, Z) + b (dz wedge dx)(Y, Z) + c (dx wedge dy)(Y, Z) \
                & = (a , dy wedge dz + b , dz wedge dx + c , dx wedge dy)(Y, Z)
                endalign$$






                share|cite|improve this answer













                Remember that
                $$beginalign
                dx wedge dy wedge dz
                & = dx otimes dy otimes dz
                + dy otimes dz otimes dx
                + dz otimes dx otimes dy \
                & - dx otimes dz otimes dy
                - dy otimes dx otimes dz
                - dz otimes dy otimes dx
                endalign$$



                Therefore,
                $$beginalign
                (dx wedge dy wedge dz)(X,Y,Z)
                & = dx(X) otimes dy(Y) otimes dz(Z)
                + dy(X) otimes dz(Y) otimes dx(Z) \
                & + dz(X) otimes dx(Y) otimes dy(Z)
                - dx(X) otimes dz(Y) otimes dy(Z) \
                & - dy(X) otimes dx(Y) otimes dz(Z)
                - dz(X) otimes dy(Y) otimes dx(Z)
                endalign$$



                In this case, $X = a partial_x + b partial_y + c partial_z,$ so
                $dx(X) = a, dy(X) = b, dz(X) = c,$ which gives
                $$beginalign
                (dx wedge dy wedge dz)(X,Y,Z)
                & = a dy(Y) otimes dz(Z)
                + b dz(Y) otimes dx(Z) \
                & + c dx(Y) otimes dy(Z)
                - a dz(Y) otimes dy(Z) \
                & - b dx(Y) otimes dz(Z)
                - c dy(Y) otimes dx(Z) \
                & = a (dy(Y) otimes dz(Z) - dz(Y) otimes dy(Z)) \
                & + b (dz(Y) otimes dx(Z) - dx(Y) otimes dz(Z)) \
                & + c (dx(Y) otimes dy(Z) - dy(Y) otimes dx(Z)) \
                & = a (dy wedge dz)(Y, Z) + b (dz wedge dx)(Y, Z) + c (dx wedge dy)(Y, Z) \
                & = (a , dy wedge dz + b , dz wedge dx + c , dx wedge dy)(Y, Z)
                endalign$$







                share|cite|improve this answer













                share|cite|improve this answer



                share|cite|improve this answer











                answered Jul 30 at 7:15









                md2perpe

                5,7821922




                5,7821922






















                     

                    draft saved


                    draft discarded


























                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2866691%2fi-xdx-wedge-dy-wedge-dz-with-x-a-frac-partial-partial-xb-frac%23new-answer', 'question_page');

                    );

                    Post as a guest













































































                    Comments

                    Popular posts from this blog

                    What is the equation of a 3D cone with generalised tilt?

                    Color the edges and diagonals of a regular polygon

                    Relationship between determinant of matrix and determinant of adjoint?