$i_X(dxwedge dywedge dz) $ with $X=afracpartial partial x+bfracpartial partial y+cfracpartial partial z$
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
I can not understand the practical way to calculate the following:
Let $X=afracpartial partial x+bfracpartial partial y+cfracpartial partial z$
show that $dxwedge dywedge dz(X,v_1,v_2)=adywedge dz-bdxwedge dz+cdxwedge dy.$
I have this:
$i_X(dxwedge dywedge dz)(v_1,v_2)=dxwedge dywedge dz(X,v_1,v_2)=dx(X,v_1,v_2)wedge (dywedge dz)(X,v_1,v_2)\
=dx(X,v_1,v_2)wedge (dy(X)dz(v_1)-dy(v_1)dz(X)+dy(X)dz(v_2)-dy(v_2)dz(X)+dy(v_1)dz(v_2)-dy(v_2)dz(v_1))\
=[dx(v_2)dy(X)dz(v_1)-dx(v_2)dy(v_1)dz(X)]+[dx(v_1)dy(X)dz(v_2)-dx(v_1)dy(v_2)dz(X)+dx(v_2)dy(v_1)dz(v_2)-dx(X)dy(v_2)dz(v_1)]\
=[bdx(v_2)dz(v_1)-cdx(v_2)dy(v_1)]+[bdx(v_1)dz(v_2)-cdx(v_1)dy(v_2)+ady(v_1)dz(v_2)-ady(v_2)dz(v_1)]$
(The only term that gives me is $ady wedge dz$ the others do not fit me with the sign to form what I want.
How would it be? I do not handle this multiplication game well.
differential-forms
add a comment |Â
up vote
1
down vote
favorite
I can not understand the practical way to calculate the following:
Let $X=afracpartial partial x+bfracpartial partial y+cfracpartial partial z$
show that $dxwedge dywedge dz(X,v_1,v_2)=adywedge dz-bdxwedge dz+cdxwedge dy.$
I have this:
$i_X(dxwedge dywedge dz)(v_1,v_2)=dxwedge dywedge dz(X,v_1,v_2)=dx(X,v_1,v_2)wedge (dywedge dz)(X,v_1,v_2)\
=dx(X,v_1,v_2)wedge (dy(X)dz(v_1)-dy(v_1)dz(X)+dy(X)dz(v_2)-dy(v_2)dz(X)+dy(v_1)dz(v_2)-dy(v_2)dz(v_1))\
=[dx(v_2)dy(X)dz(v_1)-dx(v_2)dy(v_1)dz(X)]+[dx(v_1)dy(X)dz(v_2)-dx(v_1)dy(v_2)dz(X)+dx(v_2)dy(v_1)dz(v_2)-dx(X)dy(v_2)dz(v_1)]\
=[bdx(v_2)dz(v_1)-cdx(v_2)dy(v_1)]+[bdx(v_1)dz(v_2)-cdx(v_1)dy(v_2)+ady(v_1)dz(v_2)-ady(v_2)dz(v_1)]$
(The only term that gives me is $ady wedge dz$ the others do not fit me with the sign to form what I want.
How would it be? I do not handle this multiplication game well.
differential-forms
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I can not understand the practical way to calculate the following:
Let $X=afracpartial partial x+bfracpartial partial y+cfracpartial partial z$
show that $dxwedge dywedge dz(X,v_1,v_2)=adywedge dz-bdxwedge dz+cdxwedge dy.$
I have this:
$i_X(dxwedge dywedge dz)(v_1,v_2)=dxwedge dywedge dz(X,v_1,v_2)=dx(X,v_1,v_2)wedge (dywedge dz)(X,v_1,v_2)\
=dx(X,v_1,v_2)wedge (dy(X)dz(v_1)-dy(v_1)dz(X)+dy(X)dz(v_2)-dy(v_2)dz(X)+dy(v_1)dz(v_2)-dy(v_2)dz(v_1))\
=[dx(v_2)dy(X)dz(v_1)-dx(v_2)dy(v_1)dz(X)]+[dx(v_1)dy(X)dz(v_2)-dx(v_1)dy(v_2)dz(X)+dx(v_2)dy(v_1)dz(v_2)-dx(X)dy(v_2)dz(v_1)]\
=[bdx(v_2)dz(v_1)-cdx(v_2)dy(v_1)]+[bdx(v_1)dz(v_2)-cdx(v_1)dy(v_2)+ady(v_1)dz(v_2)-ady(v_2)dz(v_1)]$
(The only term that gives me is $ady wedge dz$ the others do not fit me with the sign to form what I want.
How would it be? I do not handle this multiplication game well.
differential-forms
I can not understand the practical way to calculate the following:
Let $X=afracpartial partial x+bfracpartial partial y+cfracpartial partial z$
show that $dxwedge dywedge dz(X,v_1,v_2)=adywedge dz-bdxwedge dz+cdxwedge dy.$
I have this:
$i_X(dxwedge dywedge dz)(v_1,v_2)=dxwedge dywedge dz(X,v_1,v_2)=dx(X,v_1,v_2)wedge (dywedge dz)(X,v_1,v_2)\
=dx(X,v_1,v_2)wedge (dy(X)dz(v_1)-dy(v_1)dz(X)+dy(X)dz(v_2)-dy(v_2)dz(X)+dy(v_1)dz(v_2)-dy(v_2)dz(v_1))\
=[dx(v_2)dy(X)dz(v_1)-dx(v_2)dy(v_1)dz(X)]+[dx(v_1)dy(X)dz(v_2)-dx(v_1)dy(v_2)dz(X)+dx(v_2)dy(v_1)dz(v_2)-dx(X)dy(v_2)dz(v_1)]\
=[bdx(v_2)dz(v_1)-cdx(v_2)dy(v_1)]+[bdx(v_1)dz(v_2)-cdx(v_1)dy(v_2)+ady(v_1)dz(v_2)-ady(v_2)dz(v_1)]$
(The only term that gives me is $ady wedge dz$ the others do not fit me with the sign to form what I want.
How would it be? I do not handle this multiplication game well.
differential-forms
edited Jul 30 at 6:27
asked Jul 30 at 6:14
eraldcoil
386
386
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
Remember that
$$beginalign
dx wedge dy wedge dz
& = dx otimes dy otimes dz
+ dy otimes dz otimes dx
+ dz otimes dx otimes dy \
& - dx otimes dz otimes dy
- dy otimes dx otimes dz
- dz otimes dy otimes dx
endalign$$
Therefore,
$$beginalign
(dx wedge dy wedge dz)(X,Y,Z)
& = dx(X) otimes dy(Y) otimes dz(Z)
+ dy(X) otimes dz(Y) otimes dx(Z) \
& + dz(X) otimes dx(Y) otimes dy(Z)
- dx(X) otimes dz(Y) otimes dy(Z) \
& - dy(X) otimes dx(Y) otimes dz(Z)
- dz(X) otimes dy(Y) otimes dx(Z)
endalign$$
In this case, $X = a partial_x + b partial_y + c partial_z,$ so
$dx(X) = a, dy(X) = b, dz(X) = c,$ which gives
$$beginalign
(dx wedge dy wedge dz)(X,Y,Z)
& = a dy(Y) otimes dz(Z)
+ b dz(Y) otimes dx(Z) \
& + c dx(Y) otimes dy(Z)
- a dz(Y) otimes dy(Z) \
& - b dx(Y) otimes dz(Z)
- c dy(Y) otimes dx(Z) \
& = a (dy(Y) otimes dz(Z) - dz(Y) otimes dy(Z)) \
& + b (dz(Y) otimes dx(Z) - dx(Y) otimes dz(Z)) \
& + c (dx(Y) otimes dy(Z) - dy(Y) otimes dx(Z)) \
& = a (dy wedge dz)(Y, Z) + b (dz wedge dx)(Y, Z) + c (dx wedge dy)(Y, Z) \
& = (a , dy wedge dz + b , dz wedge dx + c , dx wedge dy)(Y, Z)
endalign$$
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Remember that
$$beginalign
dx wedge dy wedge dz
& = dx otimes dy otimes dz
+ dy otimes dz otimes dx
+ dz otimes dx otimes dy \
& - dx otimes dz otimes dy
- dy otimes dx otimes dz
- dz otimes dy otimes dx
endalign$$
Therefore,
$$beginalign
(dx wedge dy wedge dz)(X,Y,Z)
& = dx(X) otimes dy(Y) otimes dz(Z)
+ dy(X) otimes dz(Y) otimes dx(Z) \
& + dz(X) otimes dx(Y) otimes dy(Z)
- dx(X) otimes dz(Y) otimes dy(Z) \
& - dy(X) otimes dx(Y) otimes dz(Z)
- dz(X) otimes dy(Y) otimes dx(Z)
endalign$$
In this case, $X = a partial_x + b partial_y + c partial_z,$ so
$dx(X) = a, dy(X) = b, dz(X) = c,$ which gives
$$beginalign
(dx wedge dy wedge dz)(X,Y,Z)
& = a dy(Y) otimes dz(Z)
+ b dz(Y) otimes dx(Z) \
& + c dx(Y) otimes dy(Z)
- a dz(Y) otimes dy(Z) \
& - b dx(Y) otimes dz(Z)
- c dy(Y) otimes dx(Z) \
& = a (dy(Y) otimes dz(Z) - dz(Y) otimes dy(Z)) \
& + b (dz(Y) otimes dx(Z) - dx(Y) otimes dz(Z)) \
& + c (dx(Y) otimes dy(Z) - dy(Y) otimes dx(Z)) \
& = a (dy wedge dz)(Y, Z) + b (dz wedge dx)(Y, Z) + c (dx wedge dy)(Y, Z) \
& = (a , dy wedge dz + b , dz wedge dx + c , dx wedge dy)(Y, Z)
endalign$$
add a comment |Â
up vote
1
down vote
accepted
Remember that
$$beginalign
dx wedge dy wedge dz
& = dx otimes dy otimes dz
+ dy otimes dz otimes dx
+ dz otimes dx otimes dy \
& - dx otimes dz otimes dy
- dy otimes dx otimes dz
- dz otimes dy otimes dx
endalign$$
Therefore,
$$beginalign
(dx wedge dy wedge dz)(X,Y,Z)
& = dx(X) otimes dy(Y) otimes dz(Z)
+ dy(X) otimes dz(Y) otimes dx(Z) \
& + dz(X) otimes dx(Y) otimes dy(Z)
- dx(X) otimes dz(Y) otimes dy(Z) \
& - dy(X) otimes dx(Y) otimes dz(Z)
- dz(X) otimes dy(Y) otimes dx(Z)
endalign$$
In this case, $X = a partial_x + b partial_y + c partial_z,$ so
$dx(X) = a, dy(X) = b, dz(X) = c,$ which gives
$$beginalign
(dx wedge dy wedge dz)(X,Y,Z)
& = a dy(Y) otimes dz(Z)
+ b dz(Y) otimes dx(Z) \
& + c dx(Y) otimes dy(Z)
- a dz(Y) otimes dy(Z) \
& - b dx(Y) otimes dz(Z)
- c dy(Y) otimes dx(Z) \
& = a (dy(Y) otimes dz(Z) - dz(Y) otimes dy(Z)) \
& + b (dz(Y) otimes dx(Z) - dx(Y) otimes dz(Z)) \
& + c (dx(Y) otimes dy(Z) - dy(Y) otimes dx(Z)) \
& = a (dy wedge dz)(Y, Z) + b (dz wedge dx)(Y, Z) + c (dx wedge dy)(Y, Z) \
& = (a , dy wedge dz + b , dz wedge dx + c , dx wedge dy)(Y, Z)
endalign$$
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Remember that
$$beginalign
dx wedge dy wedge dz
& = dx otimes dy otimes dz
+ dy otimes dz otimes dx
+ dz otimes dx otimes dy \
& - dx otimes dz otimes dy
- dy otimes dx otimes dz
- dz otimes dy otimes dx
endalign$$
Therefore,
$$beginalign
(dx wedge dy wedge dz)(X,Y,Z)
& = dx(X) otimes dy(Y) otimes dz(Z)
+ dy(X) otimes dz(Y) otimes dx(Z) \
& + dz(X) otimes dx(Y) otimes dy(Z)
- dx(X) otimes dz(Y) otimes dy(Z) \
& - dy(X) otimes dx(Y) otimes dz(Z)
- dz(X) otimes dy(Y) otimes dx(Z)
endalign$$
In this case, $X = a partial_x + b partial_y + c partial_z,$ so
$dx(X) = a, dy(X) = b, dz(X) = c,$ which gives
$$beginalign
(dx wedge dy wedge dz)(X,Y,Z)
& = a dy(Y) otimes dz(Z)
+ b dz(Y) otimes dx(Z) \
& + c dx(Y) otimes dy(Z)
- a dz(Y) otimes dy(Z) \
& - b dx(Y) otimes dz(Z)
- c dy(Y) otimes dx(Z) \
& = a (dy(Y) otimes dz(Z) - dz(Y) otimes dy(Z)) \
& + b (dz(Y) otimes dx(Z) - dx(Y) otimes dz(Z)) \
& + c (dx(Y) otimes dy(Z) - dy(Y) otimes dx(Z)) \
& = a (dy wedge dz)(Y, Z) + b (dz wedge dx)(Y, Z) + c (dx wedge dy)(Y, Z) \
& = (a , dy wedge dz + b , dz wedge dx + c , dx wedge dy)(Y, Z)
endalign$$
Remember that
$$beginalign
dx wedge dy wedge dz
& = dx otimes dy otimes dz
+ dy otimes dz otimes dx
+ dz otimes dx otimes dy \
& - dx otimes dz otimes dy
- dy otimes dx otimes dz
- dz otimes dy otimes dx
endalign$$
Therefore,
$$beginalign
(dx wedge dy wedge dz)(X,Y,Z)
& = dx(X) otimes dy(Y) otimes dz(Z)
+ dy(X) otimes dz(Y) otimes dx(Z) \
& + dz(X) otimes dx(Y) otimes dy(Z)
- dx(X) otimes dz(Y) otimes dy(Z) \
& - dy(X) otimes dx(Y) otimes dz(Z)
- dz(X) otimes dy(Y) otimes dx(Z)
endalign$$
In this case, $X = a partial_x + b partial_y + c partial_z,$ so
$dx(X) = a, dy(X) = b, dz(X) = c,$ which gives
$$beginalign
(dx wedge dy wedge dz)(X,Y,Z)
& = a dy(Y) otimes dz(Z)
+ b dz(Y) otimes dx(Z) \
& + c dx(Y) otimes dy(Z)
- a dz(Y) otimes dy(Z) \
& - b dx(Y) otimes dz(Z)
- c dy(Y) otimes dx(Z) \
& = a (dy(Y) otimes dz(Z) - dz(Y) otimes dy(Z)) \
& + b (dz(Y) otimes dx(Z) - dx(Y) otimes dz(Z)) \
& + c (dx(Y) otimes dy(Z) - dy(Y) otimes dx(Z)) \
& = a (dy wedge dz)(Y, Z) + b (dz wedge dx)(Y, Z) + c (dx wedge dy)(Y, Z) \
& = (a , dy wedge dz + b , dz wedge dx + c , dx wedge dy)(Y, Z)
endalign$$
answered Jul 30 at 7:15
md2perpe
5,7821922
5,7821922
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2866691%2fi-xdx-wedge-dy-wedge-dz-with-x-a-frac-partial-partial-xb-frac%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password