Operator on $l^1(N)$ space
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
Let $A = (A_n,m)$ with $A_n,m in mathbbC, n,m in mathbbN$ be a matrix. Assume $||A|| = sup_m sum_n|A_n,m| < infty$. Show that for $T:l^1(mathbbN) to l^1(mathbbN), (Tf)(n) = sum_mA_n,mf(m)$ we have $||T|| = ||A||$.
Showing $||T|| leq ||A||$ was easy. But how can I show $||T|| geq ||A||$?
functional-analysis norm
add a comment |Â
up vote
1
down vote
favorite
Let $A = (A_n,m)$ with $A_n,m in mathbbC, n,m in mathbbN$ be a matrix. Assume $||A|| = sup_m sum_n|A_n,m| < infty$. Show that for $T:l^1(mathbbN) to l^1(mathbbN), (Tf)(n) = sum_mA_n,mf(m)$ we have $||T|| = ||A||$.
Showing $||T|| leq ||A||$ was easy. But how can I show $||T|| geq ||A||$?
functional-analysis norm
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Let $A = (A_n,m)$ with $A_n,m in mathbbC, n,m in mathbbN$ be a matrix. Assume $||A|| = sup_m sum_n|A_n,m| < infty$. Show that for $T:l^1(mathbbN) to l^1(mathbbN), (Tf)(n) = sum_mA_n,mf(m)$ we have $||T|| = ||A||$.
Showing $||T|| leq ||A||$ was easy. But how can I show $||T|| geq ||A||$?
functional-analysis norm
Let $A = (A_n,m)$ with $A_n,m in mathbbC, n,m in mathbbN$ be a matrix. Assume $||A|| = sup_m sum_n|A_n,m| < infty$. Show that for $T:l^1(mathbbN) to l^1(mathbbN), (Tf)(n) = sum_mA_n,mf(m)$ we have $||T|| = ||A||$.
Showing $||T|| leq ||A||$ was easy. But how can I show $||T|| geq ||A||$?
functional-analysis norm
edited Jul 30 at 8:25
Bob
1,517522
1,517522
asked Jul 30 at 8:02
AM88
96
96
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
Let $e_k$ be the sequence with $1$ at the $k-th$ place and $0$ everywhere else. Then $||Te_k||=sum_n |T(e_k)(n)|= sum _n |A_n,k|$ so $||T|| geq sum _n |A_n,k|$ for all $k$. Take sup over $k$.
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Let $e_k$ be the sequence with $1$ at the $k-th$ place and $0$ everywhere else. Then $||Te_k||=sum_n |T(e_k)(n)|= sum _n |A_n,k|$ so $||T|| geq sum _n |A_n,k|$ for all $k$. Take sup over $k$.
add a comment |Â
up vote
1
down vote
accepted
Let $e_k$ be the sequence with $1$ at the $k-th$ place and $0$ everywhere else. Then $||Te_k||=sum_n |T(e_k)(n)|= sum _n |A_n,k|$ so $||T|| geq sum _n |A_n,k|$ for all $k$. Take sup over $k$.
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Let $e_k$ be the sequence with $1$ at the $k-th$ place and $0$ everywhere else. Then $||Te_k||=sum_n |T(e_k)(n)|= sum _n |A_n,k|$ so $||T|| geq sum _n |A_n,k|$ for all $k$. Take sup over $k$.
Let $e_k$ be the sequence with $1$ at the $k-th$ place and $0$ everywhere else. Then $||Te_k||=sum_n |T(e_k)(n)|= sum _n |A_n,k|$ so $||T|| geq sum _n |A_n,k|$ for all $k$. Take sup over $k$.
answered Jul 30 at 8:10
Kavi Rama Murthy
19.7k2829
19.7k2829
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2866754%2foperator-on-l1n-space%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password