Filling gaps in âa proofâ of Fourier inversion formula
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
Suppose $fin L^1(mathbbR)$. Define the Fourier transform of $f$ as:
$$hatf:mathbbRrightarrowmathbbC, ximapstoint_mathbbRf(t)e^-2pi ixi toperatornamedt.$$
Suppose that $hat fin L^1(mathbbR)$.
Under what further hypothesis on $f$ and $hatf$can we make rigorous the following argument:
$$forall xinmathbbR, int_mathbbR hat f(xi)e^2pi ixi xoperatornamedxi overset(1)= lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(hatf(nDelta L)e^2pi Delta L in xDelta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(left(int_mathbbRf(t)e^-2piDelta L i n toperatornamedtright)e^2pi in Delta LxDelta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(int_mathbbRf(t)e^2piDelta L i n (x-t)operatornamedt Delta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(sum_k=-infty^+inftyint_frac1Delta L[k,k+1]f(t)e^2piDelta L i n (x-t)operatornamedt Delta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(sum_k=-infty^+inftyint_frac1Delta L[k,k+1]f(t)e^2piDelta L i n left((x+frackDelta L)-tright)operatornamedt Delta Lright) \ overset(2)= lim_Delta Lrightarrow0^+ sum_k=-infty^+infty left(sum_n=-infty^+inftyint_frac1Delta L[k,k+1]f(t)e^2piDelta L i n left((x+frackDelta L)-tright)operatornamedt Delta Lright) \ = lim_Delta Lrightarrow0^+ sum_k=-infty^+infty left(sum_n=-infty^+infty left(frac1frac1Delta Lint_frac1Delta L[k,k+1]f(t)e^-2piDelta L i n toperatornamedtright)e^2pi Delta L in(x+frackDelta L)right) \ overset(star)= lim_Delta Lrightarrow0^+ sum_k=-infty^+infty fleft(x+frackDelta Lright)overset(3)=f(x) ?$$
The idea is to prove Fourier inversion formula in $mathbbR$ using the Fourier inversion formula on the torus, that we used in $(star)$.
In particular, while it seems that we can take care of $(1)$ and $(3)$ imposing some decreasing condition at $infty$ on $f$ and $hatf$, I'm having hard times in finding hypothesis on $f$ and $hatf$ for which $(2)$ holds, neither I have an idea on what technique I could use to prove it.
real-analysis fourier-analysis fourier-series fourier-transform
add a comment |Â
up vote
2
down vote
favorite
Suppose $fin L^1(mathbbR)$. Define the Fourier transform of $f$ as:
$$hatf:mathbbRrightarrowmathbbC, ximapstoint_mathbbRf(t)e^-2pi ixi toperatornamedt.$$
Suppose that $hat fin L^1(mathbbR)$.
Under what further hypothesis on $f$ and $hatf$can we make rigorous the following argument:
$$forall xinmathbbR, int_mathbbR hat f(xi)e^2pi ixi xoperatornamedxi overset(1)= lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(hatf(nDelta L)e^2pi Delta L in xDelta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(left(int_mathbbRf(t)e^-2piDelta L i n toperatornamedtright)e^2pi in Delta LxDelta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(int_mathbbRf(t)e^2piDelta L i n (x-t)operatornamedt Delta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(sum_k=-infty^+inftyint_frac1Delta L[k,k+1]f(t)e^2piDelta L i n (x-t)operatornamedt Delta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(sum_k=-infty^+inftyint_frac1Delta L[k,k+1]f(t)e^2piDelta L i n left((x+frackDelta L)-tright)operatornamedt Delta Lright) \ overset(2)= lim_Delta Lrightarrow0^+ sum_k=-infty^+infty left(sum_n=-infty^+inftyint_frac1Delta L[k,k+1]f(t)e^2piDelta L i n left((x+frackDelta L)-tright)operatornamedt Delta Lright) \ = lim_Delta Lrightarrow0^+ sum_k=-infty^+infty left(sum_n=-infty^+infty left(frac1frac1Delta Lint_frac1Delta L[k,k+1]f(t)e^-2piDelta L i n toperatornamedtright)e^2pi Delta L in(x+frackDelta L)right) \ overset(star)= lim_Delta Lrightarrow0^+ sum_k=-infty^+infty fleft(x+frackDelta Lright)overset(3)=f(x) ?$$
The idea is to prove Fourier inversion formula in $mathbbR$ using the Fourier inversion formula on the torus, that we used in $(star)$.
In particular, while it seems that we can take care of $(1)$ and $(3)$ imposing some decreasing condition at $infty$ on $f$ and $hatf$, I'm having hard times in finding hypothesis on $f$ and $hatf$ for which $(2)$ holds, neither I have an idea on what technique I could use to prove it.
real-analysis fourier-analysis fourier-series fourier-transform
An application of Fubini's theorem
â timur
Aug 2 at 1:31
@timur yes, and how do you prove that the hypothesis of Fubini are satisfied?
â Bob
Aug 2 at 1:34
I know, if I had an answer it would not have been a comment :)
â timur
Aug 2 at 1:50
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Suppose $fin L^1(mathbbR)$. Define the Fourier transform of $f$ as:
$$hatf:mathbbRrightarrowmathbbC, ximapstoint_mathbbRf(t)e^-2pi ixi toperatornamedt.$$
Suppose that $hat fin L^1(mathbbR)$.
Under what further hypothesis on $f$ and $hatf$can we make rigorous the following argument:
$$forall xinmathbbR, int_mathbbR hat f(xi)e^2pi ixi xoperatornamedxi overset(1)= lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(hatf(nDelta L)e^2pi Delta L in xDelta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(left(int_mathbbRf(t)e^-2piDelta L i n toperatornamedtright)e^2pi in Delta LxDelta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(int_mathbbRf(t)e^2piDelta L i n (x-t)operatornamedt Delta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(sum_k=-infty^+inftyint_frac1Delta L[k,k+1]f(t)e^2piDelta L i n (x-t)operatornamedt Delta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(sum_k=-infty^+inftyint_frac1Delta L[k,k+1]f(t)e^2piDelta L i n left((x+frackDelta L)-tright)operatornamedt Delta Lright) \ overset(2)= lim_Delta Lrightarrow0^+ sum_k=-infty^+infty left(sum_n=-infty^+inftyint_frac1Delta L[k,k+1]f(t)e^2piDelta L i n left((x+frackDelta L)-tright)operatornamedt Delta Lright) \ = lim_Delta Lrightarrow0^+ sum_k=-infty^+infty left(sum_n=-infty^+infty left(frac1frac1Delta Lint_frac1Delta L[k,k+1]f(t)e^-2piDelta L i n toperatornamedtright)e^2pi Delta L in(x+frackDelta L)right) \ overset(star)= lim_Delta Lrightarrow0^+ sum_k=-infty^+infty fleft(x+frackDelta Lright)overset(3)=f(x) ?$$
The idea is to prove Fourier inversion formula in $mathbbR$ using the Fourier inversion formula on the torus, that we used in $(star)$.
In particular, while it seems that we can take care of $(1)$ and $(3)$ imposing some decreasing condition at $infty$ on $f$ and $hatf$, I'm having hard times in finding hypothesis on $f$ and $hatf$ for which $(2)$ holds, neither I have an idea on what technique I could use to prove it.
real-analysis fourier-analysis fourier-series fourier-transform
Suppose $fin L^1(mathbbR)$. Define the Fourier transform of $f$ as:
$$hatf:mathbbRrightarrowmathbbC, ximapstoint_mathbbRf(t)e^-2pi ixi toperatornamedt.$$
Suppose that $hat fin L^1(mathbbR)$.
Under what further hypothesis on $f$ and $hatf$can we make rigorous the following argument:
$$forall xinmathbbR, int_mathbbR hat f(xi)e^2pi ixi xoperatornamedxi overset(1)= lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(hatf(nDelta L)e^2pi Delta L in xDelta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(left(int_mathbbRf(t)e^-2piDelta L i n toperatornamedtright)e^2pi in Delta LxDelta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(int_mathbbRf(t)e^2piDelta L i n (x-t)operatornamedt Delta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(sum_k=-infty^+inftyint_frac1Delta L[k,k+1]f(t)e^2piDelta L i n (x-t)operatornamedt Delta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(sum_k=-infty^+inftyint_frac1Delta L[k,k+1]f(t)e^2piDelta L i n left((x+frackDelta L)-tright)operatornamedt Delta Lright) \ overset(2)= lim_Delta Lrightarrow0^+ sum_k=-infty^+infty left(sum_n=-infty^+inftyint_frac1Delta L[k,k+1]f(t)e^2piDelta L i n left((x+frackDelta L)-tright)operatornamedt Delta Lright) \ = lim_Delta Lrightarrow0^+ sum_k=-infty^+infty left(sum_n=-infty^+infty left(frac1frac1Delta Lint_frac1Delta L[k,k+1]f(t)e^-2piDelta L i n toperatornamedtright)e^2pi Delta L in(x+frackDelta L)right) \ overset(star)= lim_Delta Lrightarrow0^+ sum_k=-infty^+infty fleft(x+frackDelta Lright)overset(3)=f(x) ?$$
The idea is to prove Fourier inversion formula in $mathbbR$ using the Fourier inversion formula on the torus, that we used in $(star)$.
In particular, while it seems that we can take care of $(1)$ and $(3)$ imposing some decreasing condition at $infty$ on $f$ and $hatf$, I'm having hard times in finding hypothesis on $f$ and $hatf$ for which $(2)$ holds, neither I have an idea on what technique I could use to prove it.
real-analysis fourier-analysis fourier-series fourier-transform
edited Jul 30 at 6:56
asked Jul 29 at 22:55
Bob
1,517522
1,517522
An application of Fubini's theorem
â timur
Aug 2 at 1:31
@timur yes, and how do you prove that the hypothesis of Fubini are satisfied?
â Bob
Aug 2 at 1:34
I know, if I had an answer it would not have been a comment :)
â timur
Aug 2 at 1:50
add a comment |Â
An application of Fubini's theorem
â timur
Aug 2 at 1:31
@timur yes, and how do you prove that the hypothesis of Fubini are satisfied?
â Bob
Aug 2 at 1:34
I know, if I had an answer it would not have been a comment :)
â timur
Aug 2 at 1:50
An application of Fubini's theorem
â timur
Aug 2 at 1:31
An application of Fubini's theorem
â timur
Aug 2 at 1:31
@timur yes, and how do you prove that the hypothesis of Fubini are satisfied?
â Bob
Aug 2 at 1:34
@timur yes, and how do you prove that the hypothesis of Fubini are satisfied?
â Bob
Aug 2 at 1:34
I know, if I had an answer it would not have been a comment :)
â timur
Aug 2 at 1:50
I know, if I had an answer it would not have been a comment :)
â timur
Aug 2 at 1:50
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2866510%2ffilling-gaps-in-a-proof-of-fourier-inversion-formula%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
An application of Fubini's theorem
â timur
Aug 2 at 1:31
@timur yes, and how do you prove that the hypothesis of Fubini are satisfied?
â Bob
Aug 2 at 1:34
I know, if I had an answer it would not have been a comment :)
â timur
Aug 2 at 1:50