Filling gaps in “a proof” of Fourier inversion formula

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite
2












Suppose $fin L^1(mathbbR)$. Define the Fourier transform of $f$ as:
$$hatf:mathbbRrightarrowmathbbC, ximapstoint_mathbbRf(t)e^-2pi ixi toperatornamedt.$$
Suppose that $hat fin L^1(mathbbR)$.



Under what further hypothesis on $f$ and $hatf$can we make rigorous the following argument:
$$forall xinmathbbR, int_mathbbR hat f(xi)e^2pi ixi xoperatornamedxi overset(1)= lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(hatf(nDelta L)e^2pi Delta L in xDelta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(left(int_mathbbRf(t)e^-2piDelta L i n toperatornamedtright)e^2pi in Delta LxDelta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(int_mathbbRf(t)e^2piDelta L i n (x-t)operatornamedt Delta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(sum_k=-infty^+inftyint_frac1Delta L[k,k+1]f(t)e^2piDelta L i n (x-t)operatornamedt Delta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(sum_k=-infty^+inftyint_frac1Delta L[k,k+1]f(t)e^2piDelta L i n left((x+frackDelta L)-tright)operatornamedt Delta Lright) \ overset(2)= lim_Delta Lrightarrow0^+ sum_k=-infty^+infty left(sum_n=-infty^+inftyint_frac1Delta L[k,k+1]f(t)e^2piDelta L i n left((x+frackDelta L)-tright)operatornamedt Delta Lright) \ = lim_Delta Lrightarrow0^+ sum_k=-infty^+infty left(sum_n=-infty^+infty left(frac1frac1Delta Lint_frac1Delta L[k,k+1]f(t)e^-2piDelta L i n toperatornamedtright)e^2pi Delta L in(x+frackDelta L)right) \ overset(star)= lim_Delta Lrightarrow0^+ sum_k=-infty^+infty fleft(x+frackDelta Lright)overset(3)=f(x) ?$$
The idea is to prove Fourier inversion formula in $mathbbR$ using the Fourier inversion formula on the torus, that we used in $(star)$.



In particular, while it seems that we can take care of $(1)$ and $(3)$ imposing some decreasing condition at $infty$ on $f$ and $hatf$, I'm having hard times in finding hypothesis on $f$ and $hatf$ for which $(2)$ holds, neither I have an idea on what technique I could use to prove it.







share|cite|improve this question





















  • An application of Fubini's theorem
    – timur
    Aug 2 at 1:31










  • @timur yes, and how do you prove that the hypothesis of Fubini are satisfied?
    – Bob
    Aug 2 at 1:34










  • I know, if I had an answer it would not have been a comment :)
    – timur
    Aug 2 at 1:50














up vote
2
down vote

favorite
2












Suppose $fin L^1(mathbbR)$. Define the Fourier transform of $f$ as:
$$hatf:mathbbRrightarrowmathbbC, ximapstoint_mathbbRf(t)e^-2pi ixi toperatornamedt.$$
Suppose that $hat fin L^1(mathbbR)$.



Under what further hypothesis on $f$ and $hatf$can we make rigorous the following argument:
$$forall xinmathbbR, int_mathbbR hat f(xi)e^2pi ixi xoperatornamedxi overset(1)= lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(hatf(nDelta L)e^2pi Delta L in xDelta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(left(int_mathbbRf(t)e^-2piDelta L i n toperatornamedtright)e^2pi in Delta LxDelta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(int_mathbbRf(t)e^2piDelta L i n (x-t)operatornamedt Delta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(sum_k=-infty^+inftyint_frac1Delta L[k,k+1]f(t)e^2piDelta L i n (x-t)operatornamedt Delta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(sum_k=-infty^+inftyint_frac1Delta L[k,k+1]f(t)e^2piDelta L i n left((x+frackDelta L)-tright)operatornamedt Delta Lright) \ overset(2)= lim_Delta Lrightarrow0^+ sum_k=-infty^+infty left(sum_n=-infty^+inftyint_frac1Delta L[k,k+1]f(t)e^2piDelta L i n left((x+frackDelta L)-tright)operatornamedt Delta Lright) \ = lim_Delta Lrightarrow0^+ sum_k=-infty^+infty left(sum_n=-infty^+infty left(frac1frac1Delta Lint_frac1Delta L[k,k+1]f(t)e^-2piDelta L i n toperatornamedtright)e^2pi Delta L in(x+frackDelta L)right) \ overset(star)= lim_Delta Lrightarrow0^+ sum_k=-infty^+infty fleft(x+frackDelta Lright)overset(3)=f(x) ?$$
The idea is to prove Fourier inversion formula in $mathbbR$ using the Fourier inversion formula on the torus, that we used in $(star)$.



In particular, while it seems that we can take care of $(1)$ and $(3)$ imposing some decreasing condition at $infty$ on $f$ and $hatf$, I'm having hard times in finding hypothesis on $f$ and $hatf$ for which $(2)$ holds, neither I have an idea on what technique I could use to prove it.







share|cite|improve this question





















  • An application of Fubini's theorem
    – timur
    Aug 2 at 1:31










  • @timur yes, and how do you prove that the hypothesis of Fubini are satisfied?
    – Bob
    Aug 2 at 1:34










  • I know, if I had an answer it would not have been a comment :)
    – timur
    Aug 2 at 1:50












up vote
2
down vote

favorite
2









up vote
2
down vote

favorite
2






2





Suppose $fin L^1(mathbbR)$. Define the Fourier transform of $f$ as:
$$hatf:mathbbRrightarrowmathbbC, ximapstoint_mathbbRf(t)e^-2pi ixi toperatornamedt.$$
Suppose that $hat fin L^1(mathbbR)$.



Under what further hypothesis on $f$ and $hatf$can we make rigorous the following argument:
$$forall xinmathbbR, int_mathbbR hat f(xi)e^2pi ixi xoperatornamedxi overset(1)= lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(hatf(nDelta L)e^2pi Delta L in xDelta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(left(int_mathbbRf(t)e^-2piDelta L i n toperatornamedtright)e^2pi in Delta LxDelta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(int_mathbbRf(t)e^2piDelta L i n (x-t)operatornamedt Delta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(sum_k=-infty^+inftyint_frac1Delta L[k,k+1]f(t)e^2piDelta L i n (x-t)operatornamedt Delta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(sum_k=-infty^+inftyint_frac1Delta L[k,k+1]f(t)e^2piDelta L i n left((x+frackDelta L)-tright)operatornamedt Delta Lright) \ overset(2)= lim_Delta Lrightarrow0^+ sum_k=-infty^+infty left(sum_n=-infty^+inftyint_frac1Delta L[k,k+1]f(t)e^2piDelta L i n left((x+frackDelta L)-tright)operatornamedt Delta Lright) \ = lim_Delta Lrightarrow0^+ sum_k=-infty^+infty left(sum_n=-infty^+infty left(frac1frac1Delta Lint_frac1Delta L[k,k+1]f(t)e^-2piDelta L i n toperatornamedtright)e^2pi Delta L in(x+frackDelta L)right) \ overset(star)= lim_Delta Lrightarrow0^+ sum_k=-infty^+infty fleft(x+frackDelta Lright)overset(3)=f(x) ?$$
The idea is to prove Fourier inversion formula in $mathbbR$ using the Fourier inversion formula on the torus, that we used in $(star)$.



In particular, while it seems that we can take care of $(1)$ and $(3)$ imposing some decreasing condition at $infty$ on $f$ and $hatf$, I'm having hard times in finding hypothesis on $f$ and $hatf$ for which $(2)$ holds, neither I have an idea on what technique I could use to prove it.







share|cite|improve this question













Suppose $fin L^1(mathbbR)$. Define the Fourier transform of $f$ as:
$$hatf:mathbbRrightarrowmathbbC, ximapstoint_mathbbRf(t)e^-2pi ixi toperatornamedt.$$
Suppose that $hat fin L^1(mathbbR)$.



Under what further hypothesis on $f$ and $hatf$can we make rigorous the following argument:
$$forall xinmathbbR, int_mathbbR hat f(xi)e^2pi ixi xoperatornamedxi overset(1)= lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(hatf(nDelta L)e^2pi Delta L in xDelta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(left(int_mathbbRf(t)e^-2piDelta L i n toperatornamedtright)e^2pi in Delta LxDelta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(int_mathbbRf(t)e^2piDelta L i n (x-t)operatornamedt Delta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(sum_k=-infty^+inftyint_frac1Delta L[k,k+1]f(t)e^2piDelta L i n (x-t)operatornamedt Delta Lright) \ = lim_Delta Lrightarrow0^+ sum_n=-infty^+infty left(sum_k=-infty^+inftyint_frac1Delta L[k,k+1]f(t)e^2piDelta L i n left((x+frackDelta L)-tright)operatornamedt Delta Lright) \ overset(2)= lim_Delta Lrightarrow0^+ sum_k=-infty^+infty left(sum_n=-infty^+inftyint_frac1Delta L[k,k+1]f(t)e^2piDelta L i n left((x+frackDelta L)-tright)operatornamedt Delta Lright) \ = lim_Delta Lrightarrow0^+ sum_k=-infty^+infty left(sum_n=-infty^+infty left(frac1frac1Delta Lint_frac1Delta L[k,k+1]f(t)e^-2piDelta L i n toperatornamedtright)e^2pi Delta L in(x+frackDelta L)right) \ overset(star)= lim_Delta Lrightarrow0^+ sum_k=-infty^+infty fleft(x+frackDelta Lright)overset(3)=f(x) ?$$
The idea is to prove Fourier inversion formula in $mathbbR$ using the Fourier inversion formula on the torus, that we used in $(star)$.



In particular, while it seems that we can take care of $(1)$ and $(3)$ imposing some decreasing condition at $infty$ on $f$ and $hatf$, I'm having hard times in finding hypothesis on $f$ and $hatf$ for which $(2)$ holds, neither I have an idea on what technique I could use to prove it.









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 30 at 6:56
























asked Jul 29 at 22:55









Bob

1,517522




1,517522











  • An application of Fubini's theorem
    – timur
    Aug 2 at 1:31










  • @timur yes, and how do you prove that the hypothesis of Fubini are satisfied?
    – Bob
    Aug 2 at 1:34










  • I know, if I had an answer it would not have been a comment :)
    – timur
    Aug 2 at 1:50
















  • An application of Fubini's theorem
    – timur
    Aug 2 at 1:31










  • @timur yes, and how do you prove that the hypothesis of Fubini are satisfied?
    – Bob
    Aug 2 at 1:34










  • I know, if I had an answer it would not have been a comment :)
    – timur
    Aug 2 at 1:50















An application of Fubini's theorem
– timur
Aug 2 at 1:31




An application of Fubini's theorem
– timur
Aug 2 at 1:31












@timur yes, and how do you prove that the hypothesis of Fubini are satisfied?
– Bob
Aug 2 at 1:34




@timur yes, and how do you prove that the hypothesis of Fubini are satisfied?
– Bob
Aug 2 at 1:34












I know, if I had an answer it would not have been a comment :)
– timur
Aug 2 at 1:50




I know, if I had an answer it would not have been a comment :)
– timur
Aug 2 at 1:50















active

oldest

votes











Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);








 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2866510%2ffilling-gaps-in-a-proof-of-fourier-inversion-formula%23new-answer', 'question_page');

);

Post as a guest



































active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes










 

draft saved


draft discarded


























 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2866510%2ffilling-gaps-in-a-proof-of-fourier-inversion-formula%23new-answer', 'question_page');

);

Post as a guest













































































Comments

Popular posts from this blog

Color the edges and diagonals of a regular polygon

Relationship between determinant of matrix and determinant of adjoint?

What is the equation of a 3D cone with generalised tilt?