The problem for conditional expectation

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite













The joint probability density function for random variables $X$, $Y$ is given by
$$f(x, y)=begincases
2(x+y) & textif 0<x<y<1 \ 0 & textotherwise
&
endcases.$$
When the conditional expectation of $X$ is $E(X | Y=aX)=frac29$, what is the real number $a$?




I'm struggle with this problem. Any help please.







share|cite|improve this question

























    up vote
    0
    down vote

    favorite













    The joint probability density function for random variables $X$, $Y$ is given by
    $$f(x, y)=begincases
    2(x+y) & textif 0<x<y<1 \ 0 & textotherwise
    &
    endcases.$$
    When the conditional expectation of $X$ is $E(X | Y=aX)=frac29$, what is the real number $a$?




    I'm struggle with this problem. Any help please.







    share|cite|improve this question























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite












      The joint probability density function for random variables $X$, $Y$ is given by
      $$f(x, y)=begincases
      2(x+y) & textif 0<x<y<1 \ 0 & textotherwise
      &
      endcases.$$
      When the conditional expectation of $X$ is $E(X | Y=aX)=frac29$, what is the real number $a$?




      I'm struggle with this problem. Any help please.







      share|cite|improve this question














      The joint probability density function for random variables $X$, $Y$ is given by
      $$f(x, y)=begincases
      2(x+y) & textif 0<x<y<1 \ 0 & textotherwise
      &
      endcases.$$
      When the conditional expectation of $X$ is $E(X | Y=aX)=frac29$, what is the real number $a$?




      I'm struggle with this problem. Any help please.









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Jul 30 at 2:46









      Math Lover

      12.3k21232




      12.3k21232









      asked Jul 30 at 2:40









      purecj

      495




      495




















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          2
          down vote













          Hint: For $a > 1$, the conditional density of $X$ given $Y = aX$ is $f_X mid Y=aX(x) := fracf_X,Y(x, ax)int_0^1/a f_X,Y(t, at) , dt$ for $x in (0,1/a)$.




          Continuing from above, $$f_X mid Y=aX(x) := fracf_X,Y(x, ax)int_0^1/a f_X,Y(t, at) , dt= fracx+axint_0^1/a (t+at) , dt = frac(1+a)x(1+a)/(2a^2) = 2a^2 x.$$ Now that we have the conditional density, the desired conditional expectation is $$int_0^1/a x (2 a^2 x) , dx = frac23a.$$







          share|cite|improve this answer





















          • Thank you....^^
            – purecj
            Jul 30 at 3:22

















          up vote
          1
          down vote













          By definition, $$beginalignmathsf E(Xmid Y=aX) ~&=~dfracdisplaystyleint_Bbb R x, f(x,ax),mathsf d xdisplaystyleint_Bbb R f(x,ax),mathsf d x\[2ex]~&=~dfracdisplaystyleint_0^1/a 2(1+a)x^2,mathsf d xdisplaystyleint_0^1/a 2(1+a)x,mathsf d x&&textif ageq 1endalign$$






          share|cite|improve this answer























          • Thank you....^^
            – purecj
            Jul 30 at 3:22










          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2866617%2fthe-problem-for-conditional-expectation%23new-answer', 'question_page');

          );

          Post as a guest






























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          2
          down vote













          Hint: For $a > 1$, the conditional density of $X$ given $Y = aX$ is $f_X mid Y=aX(x) := fracf_X,Y(x, ax)int_0^1/a f_X,Y(t, at) , dt$ for $x in (0,1/a)$.




          Continuing from above, $$f_X mid Y=aX(x) := fracf_X,Y(x, ax)int_0^1/a f_X,Y(t, at) , dt= fracx+axint_0^1/a (t+at) , dt = frac(1+a)x(1+a)/(2a^2) = 2a^2 x.$$ Now that we have the conditional density, the desired conditional expectation is $$int_0^1/a x (2 a^2 x) , dx = frac23a.$$







          share|cite|improve this answer





















          • Thank you....^^
            – purecj
            Jul 30 at 3:22














          up vote
          2
          down vote













          Hint: For $a > 1$, the conditional density of $X$ given $Y = aX$ is $f_X mid Y=aX(x) := fracf_X,Y(x, ax)int_0^1/a f_X,Y(t, at) , dt$ for $x in (0,1/a)$.




          Continuing from above, $$f_X mid Y=aX(x) := fracf_X,Y(x, ax)int_0^1/a f_X,Y(t, at) , dt= fracx+axint_0^1/a (t+at) , dt = frac(1+a)x(1+a)/(2a^2) = 2a^2 x.$$ Now that we have the conditional density, the desired conditional expectation is $$int_0^1/a x (2 a^2 x) , dx = frac23a.$$







          share|cite|improve this answer





















          • Thank you....^^
            – purecj
            Jul 30 at 3:22












          up vote
          2
          down vote










          up vote
          2
          down vote









          Hint: For $a > 1$, the conditional density of $X$ given $Y = aX$ is $f_X mid Y=aX(x) := fracf_X,Y(x, ax)int_0^1/a f_X,Y(t, at) , dt$ for $x in (0,1/a)$.




          Continuing from above, $$f_X mid Y=aX(x) := fracf_X,Y(x, ax)int_0^1/a f_X,Y(t, at) , dt= fracx+axint_0^1/a (t+at) , dt = frac(1+a)x(1+a)/(2a^2) = 2a^2 x.$$ Now that we have the conditional density, the desired conditional expectation is $$int_0^1/a x (2 a^2 x) , dx = frac23a.$$







          share|cite|improve this answer













          Hint: For $a > 1$, the conditional density of $X$ given $Y = aX$ is $f_X mid Y=aX(x) := fracf_X,Y(x, ax)int_0^1/a f_X,Y(t, at) , dt$ for $x in (0,1/a)$.




          Continuing from above, $$f_X mid Y=aX(x) := fracf_X,Y(x, ax)int_0^1/a f_X,Y(t, at) , dt= fracx+axint_0^1/a (t+at) , dt = frac(1+a)x(1+a)/(2a^2) = 2a^2 x.$$ Now that we have the conditional density, the desired conditional expectation is $$int_0^1/a x (2 a^2 x) , dx = frac23a.$$








          share|cite|improve this answer













          share|cite|improve this answer



          share|cite|improve this answer











          answered Jul 30 at 2:54









          angryavian

          34.5k12874




          34.5k12874











          • Thank you....^^
            – purecj
            Jul 30 at 3:22
















          • Thank you....^^
            – purecj
            Jul 30 at 3:22















          Thank you....^^
          – purecj
          Jul 30 at 3:22




          Thank you....^^
          – purecj
          Jul 30 at 3:22










          up vote
          1
          down vote













          By definition, $$beginalignmathsf E(Xmid Y=aX) ~&=~dfracdisplaystyleint_Bbb R x, f(x,ax),mathsf d xdisplaystyleint_Bbb R f(x,ax),mathsf d x\[2ex]~&=~dfracdisplaystyleint_0^1/a 2(1+a)x^2,mathsf d xdisplaystyleint_0^1/a 2(1+a)x,mathsf d x&&textif ageq 1endalign$$






          share|cite|improve this answer























          • Thank you....^^
            – purecj
            Jul 30 at 3:22














          up vote
          1
          down vote













          By definition, $$beginalignmathsf E(Xmid Y=aX) ~&=~dfracdisplaystyleint_Bbb R x, f(x,ax),mathsf d xdisplaystyleint_Bbb R f(x,ax),mathsf d x\[2ex]~&=~dfracdisplaystyleint_0^1/a 2(1+a)x^2,mathsf d xdisplaystyleint_0^1/a 2(1+a)x,mathsf d x&&textif ageq 1endalign$$






          share|cite|improve this answer























          • Thank you....^^
            – purecj
            Jul 30 at 3:22












          up vote
          1
          down vote










          up vote
          1
          down vote









          By definition, $$beginalignmathsf E(Xmid Y=aX) ~&=~dfracdisplaystyleint_Bbb R x, f(x,ax),mathsf d xdisplaystyleint_Bbb R f(x,ax),mathsf d x\[2ex]~&=~dfracdisplaystyleint_0^1/a 2(1+a)x^2,mathsf d xdisplaystyleint_0^1/a 2(1+a)x,mathsf d x&&textif ageq 1endalign$$






          share|cite|improve this answer















          By definition, $$beginalignmathsf E(Xmid Y=aX) ~&=~dfracdisplaystyleint_Bbb R x, f(x,ax),mathsf d xdisplaystyleint_Bbb R f(x,ax),mathsf d x\[2ex]~&=~dfracdisplaystyleint_0^1/a 2(1+a)x^2,mathsf d xdisplaystyleint_0^1/a 2(1+a)x,mathsf d x&&textif ageq 1endalign$$







          share|cite|improve this answer















          share|cite|improve this answer



          share|cite|improve this answer








          edited Jul 30 at 2:50









          Math Lover

          12.3k21232




          12.3k21232











          answered Jul 30 at 2:47









          Graham Kemp

          80k43275




          80k43275











          • Thank you....^^
            – purecj
            Jul 30 at 3:22
















          • Thank you....^^
            – purecj
            Jul 30 at 3:22















          Thank you....^^
          – purecj
          Jul 30 at 3:22




          Thank you....^^
          – purecj
          Jul 30 at 3:22












           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2866617%2fthe-problem-for-conditional-expectation%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What is the equation of a 3D cone with generalised tilt?

          Color the edges and diagonals of a regular polygon

          Relationship between determinant of matrix and determinant of adjoint?