The problem for conditional expectation
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
The joint probability density function for random variables $X$, $Y$ is given by
$$f(x, y)=begincases
2(x+y) & textif 0<x<y<1 \ 0 & textotherwise
&
endcases.$$
When the conditional expectation of $X$ is $E(X | Y=aX)=frac29$, what is the real number $a$?
I'm struggle with this problem. Any help please.
probability expectation conditional-expectation
add a comment |Â
up vote
0
down vote
favorite
The joint probability density function for random variables $X$, $Y$ is given by
$$f(x, y)=begincases
2(x+y) & textif 0<x<y<1 \ 0 & textotherwise
&
endcases.$$
When the conditional expectation of $X$ is $E(X | Y=aX)=frac29$, what is the real number $a$?
I'm struggle with this problem. Any help please.
probability expectation conditional-expectation
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
The joint probability density function for random variables $X$, $Y$ is given by
$$f(x, y)=begincases
2(x+y) & textif 0<x<y<1 \ 0 & textotherwise
&
endcases.$$
When the conditional expectation of $X$ is $E(X | Y=aX)=frac29$, what is the real number $a$?
I'm struggle with this problem. Any help please.
probability expectation conditional-expectation
The joint probability density function for random variables $X$, $Y$ is given by
$$f(x, y)=begincases
2(x+y) & textif 0<x<y<1 \ 0 & textotherwise
&
endcases.$$
When the conditional expectation of $X$ is $E(X | Y=aX)=frac29$, what is the real number $a$?
I'm struggle with this problem. Any help please.
probability expectation conditional-expectation
edited Jul 30 at 2:46
Math Lover
12.3k21232
12.3k21232
asked Jul 30 at 2:40
purecj
495
495
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
2
down vote
Hint: For $a > 1$, the conditional density of $X$ given $Y = aX$ is $f_X mid Y=aX(x) := fracf_X,Y(x, ax)int_0^1/a f_X,Y(t, at) , dt$ for $x in (0,1/a)$.
Continuing from above, $$f_X mid Y=aX(x) := fracf_X,Y(x, ax)int_0^1/a f_X,Y(t, at) , dt= fracx+axint_0^1/a (t+at) , dt = frac(1+a)x(1+a)/(2a^2) = 2a^2 x.$$ Now that we have the conditional density, the desired conditional expectation is $$int_0^1/a x (2 a^2 x) , dx = frac23a.$$
Thank you....^^
â purecj
Jul 30 at 3:22
add a comment |Â
up vote
1
down vote
By definition, $$beginalignmathsf E(Xmid Y=aX) ~&=~dfracdisplaystyleint_Bbb R x, f(x,ax),mathsf d xdisplaystyleint_Bbb R f(x,ax),mathsf d x\[2ex]~&=~dfracdisplaystyleint_0^1/a 2(1+a)x^2,mathsf d xdisplaystyleint_0^1/a 2(1+a)x,mathsf d x&&textif ageq 1endalign$$
Thank you....^^
â purecj
Jul 30 at 3:22
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
Hint: For $a > 1$, the conditional density of $X$ given $Y = aX$ is $f_X mid Y=aX(x) := fracf_X,Y(x, ax)int_0^1/a f_X,Y(t, at) , dt$ for $x in (0,1/a)$.
Continuing from above, $$f_X mid Y=aX(x) := fracf_X,Y(x, ax)int_0^1/a f_X,Y(t, at) , dt= fracx+axint_0^1/a (t+at) , dt = frac(1+a)x(1+a)/(2a^2) = 2a^2 x.$$ Now that we have the conditional density, the desired conditional expectation is $$int_0^1/a x (2 a^2 x) , dx = frac23a.$$
Thank you....^^
â purecj
Jul 30 at 3:22
add a comment |Â
up vote
2
down vote
Hint: For $a > 1$, the conditional density of $X$ given $Y = aX$ is $f_X mid Y=aX(x) := fracf_X,Y(x, ax)int_0^1/a f_X,Y(t, at) , dt$ for $x in (0,1/a)$.
Continuing from above, $$f_X mid Y=aX(x) := fracf_X,Y(x, ax)int_0^1/a f_X,Y(t, at) , dt= fracx+axint_0^1/a (t+at) , dt = frac(1+a)x(1+a)/(2a^2) = 2a^2 x.$$ Now that we have the conditional density, the desired conditional expectation is $$int_0^1/a x (2 a^2 x) , dx = frac23a.$$
Thank you....^^
â purecj
Jul 30 at 3:22
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Hint: For $a > 1$, the conditional density of $X$ given $Y = aX$ is $f_X mid Y=aX(x) := fracf_X,Y(x, ax)int_0^1/a f_X,Y(t, at) , dt$ for $x in (0,1/a)$.
Continuing from above, $$f_X mid Y=aX(x) := fracf_X,Y(x, ax)int_0^1/a f_X,Y(t, at) , dt= fracx+axint_0^1/a (t+at) , dt = frac(1+a)x(1+a)/(2a^2) = 2a^2 x.$$ Now that we have the conditional density, the desired conditional expectation is $$int_0^1/a x (2 a^2 x) , dx = frac23a.$$
Hint: For $a > 1$, the conditional density of $X$ given $Y = aX$ is $f_X mid Y=aX(x) := fracf_X,Y(x, ax)int_0^1/a f_X,Y(t, at) , dt$ for $x in (0,1/a)$.
Continuing from above, $$f_X mid Y=aX(x) := fracf_X,Y(x, ax)int_0^1/a f_X,Y(t, at) , dt= fracx+axint_0^1/a (t+at) , dt = frac(1+a)x(1+a)/(2a^2) = 2a^2 x.$$ Now that we have the conditional density, the desired conditional expectation is $$int_0^1/a x (2 a^2 x) , dx = frac23a.$$
answered Jul 30 at 2:54
angryavian
34.5k12874
34.5k12874
Thank you....^^
â purecj
Jul 30 at 3:22
add a comment |Â
Thank you....^^
â purecj
Jul 30 at 3:22
Thank you....^^
â purecj
Jul 30 at 3:22
Thank you....^^
â purecj
Jul 30 at 3:22
add a comment |Â
up vote
1
down vote
By definition, $$beginalignmathsf E(Xmid Y=aX) ~&=~dfracdisplaystyleint_Bbb R x, f(x,ax),mathsf d xdisplaystyleint_Bbb R f(x,ax),mathsf d x\[2ex]~&=~dfracdisplaystyleint_0^1/a 2(1+a)x^2,mathsf d xdisplaystyleint_0^1/a 2(1+a)x,mathsf d x&&textif ageq 1endalign$$
Thank you....^^
â purecj
Jul 30 at 3:22
add a comment |Â
up vote
1
down vote
By definition, $$beginalignmathsf E(Xmid Y=aX) ~&=~dfracdisplaystyleint_Bbb R x, f(x,ax),mathsf d xdisplaystyleint_Bbb R f(x,ax),mathsf d x\[2ex]~&=~dfracdisplaystyleint_0^1/a 2(1+a)x^2,mathsf d xdisplaystyleint_0^1/a 2(1+a)x,mathsf d x&&textif ageq 1endalign$$
Thank you....^^
â purecj
Jul 30 at 3:22
add a comment |Â
up vote
1
down vote
up vote
1
down vote
By definition, $$beginalignmathsf E(Xmid Y=aX) ~&=~dfracdisplaystyleint_Bbb R x, f(x,ax),mathsf d xdisplaystyleint_Bbb R f(x,ax),mathsf d x\[2ex]~&=~dfracdisplaystyleint_0^1/a 2(1+a)x^2,mathsf d xdisplaystyleint_0^1/a 2(1+a)x,mathsf d x&&textif ageq 1endalign$$
By definition, $$beginalignmathsf E(Xmid Y=aX) ~&=~dfracdisplaystyleint_Bbb R x, f(x,ax),mathsf d xdisplaystyleint_Bbb R f(x,ax),mathsf d x\[2ex]~&=~dfracdisplaystyleint_0^1/a 2(1+a)x^2,mathsf d xdisplaystyleint_0^1/a 2(1+a)x,mathsf d x&&textif ageq 1endalign$$
edited Jul 30 at 2:50
Math Lover
12.3k21232
12.3k21232
answered Jul 30 at 2:47
Graham Kemp
80k43275
80k43275
Thank you....^^
â purecj
Jul 30 at 3:22
add a comment |Â
Thank you....^^
â purecj
Jul 30 at 3:22
Thank you....^^
â purecj
Jul 30 at 3:22
Thank you....^^
â purecj
Jul 30 at 3:22
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2866617%2fthe-problem-for-conditional-expectation%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password