What does this linear transformation do?
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
The following is given:
- $F_4$ is the vector space of all symmetrical matrices
- $F = operatornameSpanleftbeginbmatrix 1 & 0 \ 0 & 0 endbmatrix; beginbmatrix 0 & 1 \ 1 & 0 endbmatrix ; beginbmatrix 0 & 0 \ 0 & 1 endbmatrix right$
- $ L:F rightarrow F : A rightarrow Abeginbmatrix 0 & 0 \ 0 & 1 endbmatrix + beginbmatrix 0 & 0 \ 0 & 1 endbmatrixA$
The following is asked:
- What does this linear transformation do ?
- Give an exact description of the kernel and range of the transformation.
- Give the matrix representation M of this transformation
- Eigenvalues and Eigenvectors of the transformation
- What is the dimension of the Eigenspace ?
The kernel, range, matrix representation, eigenvalues and eigenvectors are pretty straightforward. I am struggling with the explanation of what this transformation does and the dimension of the Eigenspace. Can someone explain to me what this transformation does and hint me on the eigenspace question ?
linear-algebra linear-transformations
add a comment |Â
up vote
2
down vote
favorite
The following is given:
- $F_4$ is the vector space of all symmetrical matrices
- $F = operatornameSpanleftbeginbmatrix 1 & 0 \ 0 & 0 endbmatrix; beginbmatrix 0 & 1 \ 1 & 0 endbmatrix ; beginbmatrix 0 & 0 \ 0 & 1 endbmatrix right$
- $ L:F rightarrow F : A rightarrow Abeginbmatrix 0 & 0 \ 0 & 1 endbmatrix + beginbmatrix 0 & 0 \ 0 & 1 endbmatrixA$
The following is asked:
- What does this linear transformation do ?
- Give an exact description of the kernel and range of the transformation.
- Give the matrix representation M of this transformation
- Eigenvalues and Eigenvectors of the transformation
- What is the dimension of the Eigenspace ?
The kernel, range, matrix representation, eigenvalues and eigenvectors are pretty straightforward. I am struggling with the explanation of what this transformation does and the dimension of the Eigenspace. Can someone explain to me what this transformation does and hint me on the eigenspace question ?
linear-algebra linear-transformations
Have you written down the 5th point correctly? There are three eigenspaces ...
â ancientmathematician
Jul 30 at 8:59
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
The following is given:
- $F_4$ is the vector space of all symmetrical matrices
- $F = operatornameSpanleftbeginbmatrix 1 & 0 \ 0 & 0 endbmatrix; beginbmatrix 0 & 1 \ 1 & 0 endbmatrix ; beginbmatrix 0 & 0 \ 0 & 1 endbmatrix right$
- $ L:F rightarrow F : A rightarrow Abeginbmatrix 0 & 0 \ 0 & 1 endbmatrix + beginbmatrix 0 & 0 \ 0 & 1 endbmatrixA$
The following is asked:
- What does this linear transformation do ?
- Give an exact description of the kernel and range of the transformation.
- Give the matrix representation M of this transformation
- Eigenvalues and Eigenvectors of the transformation
- What is the dimension of the Eigenspace ?
The kernel, range, matrix representation, eigenvalues and eigenvectors are pretty straightforward. I am struggling with the explanation of what this transformation does and the dimension of the Eigenspace. Can someone explain to me what this transformation does and hint me on the eigenspace question ?
linear-algebra linear-transformations
The following is given:
- $F_4$ is the vector space of all symmetrical matrices
- $F = operatornameSpanleftbeginbmatrix 1 & 0 \ 0 & 0 endbmatrix; beginbmatrix 0 & 1 \ 1 & 0 endbmatrix ; beginbmatrix 0 & 0 \ 0 & 1 endbmatrix right$
- $ L:F rightarrow F : A rightarrow Abeginbmatrix 0 & 0 \ 0 & 1 endbmatrix + beginbmatrix 0 & 0 \ 0 & 1 endbmatrixA$
The following is asked:
- What does this linear transformation do ?
- Give an exact description of the kernel and range of the transformation.
- Give the matrix representation M of this transformation
- Eigenvalues and Eigenvectors of the transformation
- What is the dimension of the Eigenspace ?
The kernel, range, matrix representation, eigenvalues and eigenvectors are pretty straightforward. I am struggling with the explanation of what this transformation does and the dimension of the Eigenspace. Can someone explain to me what this transformation does and hint me on the eigenspace question ?
linear-algebra linear-transformations
edited Jul 30 at 1:04
Michael Hardy
204k23185461
204k23185461
asked Jul 30 at 1:01
mbouchi
112
112
Have you written down the 5th point correctly? There are three eigenspaces ...
â ancientmathematician
Jul 30 at 8:59
add a comment |Â
Have you written down the 5th point correctly? There are three eigenspaces ...
â ancientmathematician
Jul 30 at 8:59
Have you written down the 5th point correctly? There are three eigenspaces ...
â ancientmathematician
Jul 30 at 8:59
Have you written down the 5th point correctly? There are three eigenspaces ...
â ancientmathematician
Jul 30 at 8:59
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
Hint Write $A= beginbmatrix a & b \ c &d endbmatrix$. Then
$$L(A)= beginbmatrix a & b \ c &d endbmatrixrightarrow Abeginbmatrix 0 & 0 \ 0 & 1 endbmatrix + beginbmatrix 0 & 0 \ 0 & 1 endbmatrixbeginbmatrix a & b \ c &d endbmatrix= beginbmatrix ?? & ?? \ ?? &??endbmatrix$$
-Kernel: Solve $L(A)=0$.
-Range: describe all values of $L(A)$.
-Matrix Representation: calculate $L$ of the cannonical basis.
-Eigenvalues/Eigenvectors: For which $A$ do you get $L(A)=lambda A$?
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
Hint Write $A= beginbmatrix a & b \ c &d endbmatrix$. Then
$$L(A)= beginbmatrix a & b \ c &d endbmatrixrightarrow Abeginbmatrix 0 & 0 \ 0 & 1 endbmatrix + beginbmatrix 0 & 0 \ 0 & 1 endbmatrixbeginbmatrix a & b \ c &d endbmatrix= beginbmatrix ?? & ?? \ ?? &??endbmatrix$$
-Kernel: Solve $L(A)=0$.
-Range: describe all values of $L(A)$.
-Matrix Representation: calculate $L$ of the cannonical basis.
-Eigenvalues/Eigenvectors: For which $A$ do you get $L(A)=lambda A$?
add a comment |Â
up vote
1
down vote
Hint Write $A= beginbmatrix a & b \ c &d endbmatrix$. Then
$$L(A)= beginbmatrix a & b \ c &d endbmatrixrightarrow Abeginbmatrix 0 & 0 \ 0 & 1 endbmatrix + beginbmatrix 0 & 0 \ 0 & 1 endbmatrixbeginbmatrix a & b \ c &d endbmatrix= beginbmatrix ?? & ?? \ ?? &??endbmatrix$$
-Kernel: Solve $L(A)=0$.
-Range: describe all values of $L(A)$.
-Matrix Representation: calculate $L$ of the cannonical basis.
-Eigenvalues/Eigenvectors: For which $A$ do you get $L(A)=lambda A$?
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Hint Write $A= beginbmatrix a & b \ c &d endbmatrix$. Then
$$L(A)= beginbmatrix a & b \ c &d endbmatrixrightarrow Abeginbmatrix 0 & 0 \ 0 & 1 endbmatrix + beginbmatrix 0 & 0 \ 0 & 1 endbmatrixbeginbmatrix a & b \ c &d endbmatrix= beginbmatrix ?? & ?? \ ?? &??endbmatrix$$
-Kernel: Solve $L(A)=0$.
-Range: describe all values of $L(A)$.
-Matrix Representation: calculate $L$ of the cannonical basis.
-Eigenvalues/Eigenvectors: For which $A$ do you get $L(A)=lambda A$?
Hint Write $A= beginbmatrix a & b \ c &d endbmatrix$. Then
$$L(A)= beginbmatrix a & b \ c &d endbmatrixrightarrow Abeginbmatrix 0 & 0 \ 0 & 1 endbmatrix + beginbmatrix 0 & 0 \ 0 & 1 endbmatrixbeginbmatrix a & b \ c &d endbmatrix= beginbmatrix ?? & ?? \ ?? &??endbmatrix$$
-Kernel: Solve $L(A)=0$.
-Range: describe all values of $L(A)$.
-Matrix Representation: calculate $L$ of the cannonical basis.
-Eigenvalues/Eigenvectors: For which $A$ do you get $L(A)=lambda A$?
answered Jul 30 at 1:12
N. S.
97.7k5105197
97.7k5105197
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2866574%2fwhat-does-this-linear-transformation-do%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Have you written down the 5th point correctly? There are three eigenspaces ...
â ancientmathematician
Jul 30 at 8:59