What does this linear transformation do?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite












The following is given:



  • $F_4$ is the vector space of all symmetrical matrices

  • $F = operatornameSpanleftbeginbmatrix 1 & 0 \ 0 & 0 endbmatrix; beginbmatrix 0 & 1 \ 1 & 0 endbmatrix ; beginbmatrix 0 & 0 \ 0 & 1 endbmatrix right$

  • $ L:F rightarrow F : A rightarrow Abeginbmatrix 0 & 0 \ 0 & 1 endbmatrix + beginbmatrix 0 & 0 \ 0 & 1 endbmatrixA$

The following is asked:



  • What does this linear transformation do ?

  • Give an exact description of the kernel and range of the transformation.

  • Give the matrix representation M of this transformation

  • Eigenvalues and Eigenvectors of the transformation

  • What is the dimension of the Eigenspace ?

The kernel, range, matrix representation, eigenvalues and eigenvectors are pretty straightforward. I am struggling with the explanation of what this transformation does and the dimension of the Eigenspace. Can someone explain to me what this transformation does and hint me on the eigenspace question ?







share|cite|improve this question





















  • Have you written down the 5th point correctly? There are three eigenspaces ...
    – ancientmathematician
    Jul 30 at 8:59














up vote
2
down vote

favorite












The following is given:



  • $F_4$ is the vector space of all symmetrical matrices

  • $F = operatornameSpanleftbeginbmatrix 1 & 0 \ 0 & 0 endbmatrix; beginbmatrix 0 & 1 \ 1 & 0 endbmatrix ; beginbmatrix 0 & 0 \ 0 & 1 endbmatrix right$

  • $ L:F rightarrow F : A rightarrow Abeginbmatrix 0 & 0 \ 0 & 1 endbmatrix + beginbmatrix 0 & 0 \ 0 & 1 endbmatrixA$

The following is asked:



  • What does this linear transformation do ?

  • Give an exact description of the kernel and range of the transformation.

  • Give the matrix representation M of this transformation

  • Eigenvalues and Eigenvectors of the transformation

  • What is the dimension of the Eigenspace ?

The kernel, range, matrix representation, eigenvalues and eigenvectors are pretty straightforward. I am struggling with the explanation of what this transformation does and the dimension of the Eigenspace. Can someone explain to me what this transformation does and hint me on the eigenspace question ?







share|cite|improve this question





















  • Have you written down the 5th point correctly? There are three eigenspaces ...
    – ancientmathematician
    Jul 30 at 8:59












up vote
2
down vote

favorite









up vote
2
down vote

favorite











The following is given:



  • $F_4$ is the vector space of all symmetrical matrices

  • $F = operatornameSpanleftbeginbmatrix 1 & 0 \ 0 & 0 endbmatrix; beginbmatrix 0 & 1 \ 1 & 0 endbmatrix ; beginbmatrix 0 & 0 \ 0 & 1 endbmatrix right$

  • $ L:F rightarrow F : A rightarrow Abeginbmatrix 0 & 0 \ 0 & 1 endbmatrix + beginbmatrix 0 & 0 \ 0 & 1 endbmatrixA$

The following is asked:



  • What does this linear transformation do ?

  • Give an exact description of the kernel and range of the transformation.

  • Give the matrix representation M of this transformation

  • Eigenvalues and Eigenvectors of the transformation

  • What is the dimension of the Eigenspace ?

The kernel, range, matrix representation, eigenvalues and eigenvectors are pretty straightforward. I am struggling with the explanation of what this transformation does and the dimension of the Eigenspace. Can someone explain to me what this transformation does and hint me on the eigenspace question ?







share|cite|improve this question













The following is given:



  • $F_4$ is the vector space of all symmetrical matrices

  • $F = operatornameSpanleftbeginbmatrix 1 & 0 \ 0 & 0 endbmatrix; beginbmatrix 0 & 1 \ 1 & 0 endbmatrix ; beginbmatrix 0 & 0 \ 0 & 1 endbmatrix right$

  • $ L:F rightarrow F : A rightarrow Abeginbmatrix 0 & 0 \ 0 & 1 endbmatrix + beginbmatrix 0 & 0 \ 0 & 1 endbmatrixA$

The following is asked:



  • What does this linear transformation do ?

  • Give an exact description of the kernel and range of the transformation.

  • Give the matrix representation M of this transformation

  • Eigenvalues and Eigenvectors of the transformation

  • What is the dimension of the Eigenspace ?

The kernel, range, matrix representation, eigenvalues and eigenvectors are pretty straightforward. I am struggling with the explanation of what this transformation does and the dimension of the Eigenspace. Can someone explain to me what this transformation does and hint me on the eigenspace question ?









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 30 at 1:04









Michael Hardy

204k23185461




204k23185461









asked Jul 30 at 1:01









mbouchi

112




112











  • Have you written down the 5th point correctly? There are three eigenspaces ...
    – ancientmathematician
    Jul 30 at 8:59
















  • Have you written down the 5th point correctly? There are three eigenspaces ...
    – ancientmathematician
    Jul 30 at 8:59















Have you written down the 5th point correctly? There are three eigenspaces ...
– ancientmathematician
Jul 30 at 8:59




Have you written down the 5th point correctly? There are three eigenspaces ...
– ancientmathematician
Jul 30 at 8:59










1 Answer
1






active

oldest

votes

















up vote
1
down vote













Hint Write $A= beginbmatrix a & b \ c &d endbmatrix$. Then
$$L(A)= beginbmatrix a & b \ c &d endbmatrixrightarrow Abeginbmatrix 0 & 0 \ 0 & 1 endbmatrix + beginbmatrix 0 & 0 \ 0 & 1 endbmatrixbeginbmatrix a & b \ c &d endbmatrix= beginbmatrix ?? & ?? \ ?? &??endbmatrix$$



-Kernel: Solve $L(A)=0$.



-Range: describe all values of $L(A)$.



-Matrix Representation: calculate $L$ of the cannonical basis.



-Eigenvalues/Eigenvectors: For which $A$ do you get $L(A)=lambda A$?






share|cite|improve this answer





















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2866574%2fwhat-does-this-linear-transformation-do%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote













    Hint Write $A= beginbmatrix a & b \ c &d endbmatrix$. Then
    $$L(A)= beginbmatrix a & b \ c &d endbmatrixrightarrow Abeginbmatrix 0 & 0 \ 0 & 1 endbmatrix + beginbmatrix 0 & 0 \ 0 & 1 endbmatrixbeginbmatrix a & b \ c &d endbmatrix= beginbmatrix ?? & ?? \ ?? &??endbmatrix$$



    -Kernel: Solve $L(A)=0$.



    -Range: describe all values of $L(A)$.



    -Matrix Representation: calculate $L$ of the cannonical basis.



    -Eigenvalues/Eigenvectors: For which $A$ do you get $L(A)=lambda A$?






    share|cite|improve this answer

























      up vote
      1
      down vote













      Hint Write $A= beginbmatrix a & b \ c &d endbmatrix$. Then
      $$L(A)= beginbmatrix a & b \ c &d endbmatrixrightarrow Abeginbmatrix 0 & 0 \ 0 & 1 endbmatrix + beginbmatrix 0 & 0 \ 0 & 1 endbmatrixbeginbmatrix a & b \ c &d endbmatrix= beginbmatrix ?? & ?? \ ?? &??endbmatrix$$



      -Kernel: Solve $L(A)=0$.



      -Range: describe all values of $L(A)$.



      -Matrix Representation: calculate $L$ of the cannonical basis.



      -Eigenvalues/Eigenvectors: For which $A$ do you get $L(A)=lambda A$?






      share|cite|improve this answer























        up vote
        1
        down vote










        up vote
        1
        down vote









        Hint Write $A= beginbmatrix a & b \ c &d endbmatrix$. Then
        $$L(A)= beginbmatrix a & b \ c &d endbmatrixrightarrow Abeginbmatrix 0 & 0 \ 0 & 1 endbmatrix + beginbmatrix 0 & 0 \ 0 & 1 endbmatrixbeginbmatrix a & b \ c &d endbmatrix= beginbmatrix ?? & ?? \ ?? &??endbmatrix$$



        -Kernel: Solve $L(A)=0$.



        -Range: describe all values of $L(A)$.



        -Matrix Representation: calculate $L$ of the cannonical basis.



        -Eigenvalues/Eigenvectors: For which $A$ do you get $L(A)=lambda A$?






        share|cite|improve this answer













        Hint Write $A= beginbmatrix a & b \ c &d endbmatrix$. Then
        $$L(A)= beginbmatrix a & b \ c &d endbmatrixrightarrow Abeginbmatrix 0 & 0 \ 0 & 1 endbmatrix + beginbmatrix 0 & 0 \ 0 & 1 endbmatrixbeginbmatrix a & b \ c &d endbmatrix= beginbmatrix ?? & ?? \ ?? &??endbmatrix$$



        -Kernel: Solve $L(A)=0$.



        -Range: describe all values of $L(A)$.



        -Matrix Representation: calculate $L$ of the cannonical basis.



        -Eigenvalues/Eigenvectors: For which $A$ do you get $L(A)=lambda A$?







        share|cite|improve this answer













        share|cite|improve this answer



        share|cite|improve this answer











        answered Jul 30 at 1:12









        N. S.

        97.7k5105197




        97.7k5105197






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2866574%2fwhat-does-this-linear-transformation-do%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What is the equation of a 3D cone with generalised tilt?

            Color the edges and diagonals of a regular polygon

            Relationship between determinant of matrix and determinant of adjoint?