calculating the $P(X,Y,Z) , P(X,Z)$ and $P(X|Y,Z)$ when Z=X+Y
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Let $X$ and $Y$ be two independent binary random variable with the same alphabet $0,1$,ie,$Pr(0)=Pr(1)=frac12$
I have known the probability of P(X|Z) already.
X Y X+Y XâÂÂY Prob
0 0 0 0 1/4
0 1 1 1 1/4
1 0 1 1 1/4
1 1 2 0 1/4
For $mathbb P(X=x mid Z=z)$
- $mathbb P(X=0 mid X+Y=0)=1$, $,mathbb P(X=1 mid X+Y=0)=0$,
- $mathbb P(X=0 mid X+Y=1)=frac12$, $mathbb P(X=1 mid X+Y=1)=frac12$,
- $mathbb P(X=0 mid X+Y=2)=0$, $,mathbb P(X=1 mid X+Y=1)=1$
But i don't know how to calculate the $P(X,Y,Z) , P(X,Z)$ and $P(X|Y,Z)$? Is $P(X,Y,Z)=P(X,Z)$? Is $P(X|Y,Z)=P(X|Z)$ ?
probability
add a comment |Â
up vote
0
down vote
favorite
Let $X$ and $Y$ be two independent binary random variable with the same alphabet $0,1$,ie,$Pr(0)=Pr(1)=frac12$
I have known the probability of P(X|Z) already.
X Y X+Y XâÂÂY Prob
0 0 0 0 1/4
0 1 1 1 1/4
1 0 1 1 1/4
1 1 2 0 1/4
For $mathbb P(X=x mid Z=z)$
- $mathbb P(X=0 mid X+Y=0)=1$, $,mathbb P(X=1 mid X+Y=0)=0$,
- $mathbb P(X=0 mid X+Y=1)=frac12$, $mathbb P(X=1 mid X+Y=1)=frac12$,
- $mathbb P(X=0 mid X+Y=2)=0$, $,mathbb P(X=1 mid X+Y=1)=1$
But i don't know how to calculate the $P(X,Y,Z) , P(X,Z)$ and $P(X|Y,Z)$? Is $P(X,Y,Z)=P(X,Z)$? Is $P(X|Y,Z)=P(X|Z)$ ?
probability
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $X$ and $Y$ be two independent binary random variable with the same alphabet $0,1$,ie,$Pr(0)=Pr(1)=frac12$
I have known the probability of P(X|Z) already.
X Y X+Y XâÂÂY Prob
0 0 0 0 1/4
0 1 1 1 1/4
1 0 1 1 1/4
1 1 2 0 1/4
For $mathbb P(X=x mid Z=z)$
- $mathbb P(X=0 mid X+Y=0)=1$, $,mathbb P(X=1 mid X+Y=0)=0$,
- $mathbb P(X=0 mid X+Y=1)=frac12$, $mathbb P(X=1 mid X+Y=1)=frac12$,
- $mathbb P(X=0 mid X+Y=2)=0$, $,mathbb P(X=1 mid X+Y=1)=1$
But i don't know how to calculate the $P(X,Y,Z) , P(X,Z)$ and $P(X|Y,Z)$? Is $P(X,Y,Z)=P(X,Z)$? Is $P(X|Y,Z)=P(X|Z)$ ?
probability
Let $X$ and $Y$ be two independent binary random variable with the same alphabet $0,1$,ie,$Pr(0)=Pr(1)=frac12$
I have known the probability of P(X|Z) already.
X Y X+Y XâÂÂY Prob
0 0 0 0 1/4
0 1 1 1 1/4
1 0 1 1 1/4
1 1 2 0 1/4
For $mathbb P(X=x mid Z=z)$
- $mathbb P(X=0 mid X+Y=0)=1$, $,mathbb P(X=1 mid X+Y=0)=0$,
- $mathbb P(X=0 mid X+Y=1)=frac12$, $mathbb P(X=1 mid X+Y=1)=frac12$,
- $mathbb P(X=0 mid X+Y=2)=0$, $,mathbb P(X=1 mid X+Y=1)=1$
But i don't know how to calculate the $P(X,Y,Z) , P(X,Z)$ and $P(X|Y,Z)$? Is $P(X,Y,Z)=P(X,Z)$? Is $P(X|Y,Z)=P(X|Z)$ ?
probability
asked Jul 29 at 23:55
Shine Sun
1258
1258
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
Since $X perp Y$ then $P(X,Y) = P(X) , P(Y) = 1/4$.
$$
beginarrayccc
p_XY& 0 & 1 & p_Y \
0 & 1/4 & 1/4 & 1/2\
1 & 1/4 & 1/4 & 1/2\
hline
p_X & 1/2& 1/2 & 1
endarray
$$
LetâÂÂs construct the table of the marginals to find $P(X=x,Z=z) = p_XZ(x,z)$.
$$
beginarrayccc
p_XZ& 0 & 1 & p_Z \
0 & ? & 0 & ?\
1 & ? & ? & ?\
2 & 0 & ? & ? \
hline
p_X & 1/2& 1/2 & 1
endarray
$$
Observe that $p_Z(0) = p_XY(0,0) = 1/4$ as $Z = 0 iff X = 0 cap Y = 0$. The same holds for $p_Z(2) = p_XY(1,1) = 1/4$. Then $p_Z(1) = 1 - 1/4 - 1/4 = 1/2$.
$$
beginarrayccc
p_XZ& 0 & 1 & p_Z \
0 & ? & 0 & 1/4\
1 & ? & ? & 1/2\
2 & 0 & ? & 1/4 \
hline
p_X & 1/2& 1/2 & 1
endarray
$$
It is easy to resolve all the $?$ inside the table.
$$
beginarrayccc
p_XZ& 0 & 1 & p_Z \
0 & 1/4 & 0 & 1/4\
1 & 1/4 & 1/4 & 1/2\
2 & 0 & 1/4 & 1/4 \
hline
p_X & 1/2& 1/2 & 1
endarray
$$
Note that $p_XZ = p_YZ$.
Note also that $p_XY(x,y) = p_XYZ(x,y,0)+p_XYZ(x,y,1)+p_XYZ(x,y,2)$, then:
[
beginalign
p_XY(0,0) = p_XYZ(0,0,0) = 1/4 \
p_XY(0,1) = p_XYZ(0,1,1) = 1/4 \
p_XY(1,0) = p_XYZ(1,0,1) = 1/4 \
p_XY(1,1) = p_XYZ(1,1,2) = 1/4 \
endalign
]
Supplement - The conditional mutual information $I(X,Y|Z)$ can be calculated using the formula shown in Wikipedia.
$$I(X,Y|Z)=sum_zin Zsum_yin Ysum_xin Xp_XYZ(x,y,z)logfracp_Z(z)p_XYZ(x,y,z)p_XZ(x,z)p_YZ(y,z)$$
Then
[
beginalign
I(X,Y|Z) &= frac14sum_zin Zsum_yin Ysum_xin Xlogfrac1,/,4cdot p_Z(z)1,/,4 cdot 1,/,4 \
&= frac14sum_zin Zsum_yin Ysum_xin Xlogleft(4 , p_Z(z)right) \
&= sum_zin Zlogleft(4 , p_Z(z)right) & left[text$sum_ysum_x f(z)=4f(z)$right] \
&= logfrac44 + logfrac42 + logfrac44 \
&= log 2
endalign
]
If $log = log_2$ then
[I(X,Y|Z)= 1 text bit]
but if $I(X;Y|Z)=H(X|Z)-H(X|Y,Z)=[frac-14log_21+0+frac-14log_2frac12+frac-14log_2frac12]-[frac14log_2frac14 times 4]=frac12 -2=$ negative value,but the I(X;Y|Z) should be semipositive ,$gt$.
â Shine Sun
Jul 30 at 4:48
@ShineSun just edited the answer to calculate what you requested. I'm going to investigate your formula right now.
â Giulio Scattolin
Jul 30 at 10:05
may i ask why is $I(X,Y|Z)=frac14sum_zin Zsum_yin Ysum_xin Xlogfrac1/8[p_Z(x,z)]^2 =frac12sum_zin Zsum_xin Xlogfrac1/8[p_Z(x,z)]^2$ ?Why is $sum_y=2$
â Shine Sun
Jul 30 at 11:31
I think I did something wrong there, from another calculation it comes out $I(X,Y|Z)=2+2-2-1.5=0.5 text bits$. I'm going to figure out that and improve comments ASAP
â Giulio Scattolin
Jul 30 at 11:35
It's a bit embarassing, I made a mistake while copying the formula from Wikipedia. Moreover now I get $I(X,Y|Z)=1 text bit$ from the corrected version. I'm afraid the assumption $P(X|Y,Z)=P(X,Z)$ is wrong and I also misused a formula in the calculation I cited in my previous comment.. I've updated the answer in the meanwhile.
â Giulio Scattolin
Jul 30 at 14:06
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Since $X perp Y$ then $P(X,Y) = P(X) , P(Y) = 1/4$.
$$
beginarrayccc
p_XY& 0 & 1 & p_Y \
0 & 1/4 & 1/4 & 1/2\
1 & 1/4 & 1/4 & 1/2\
hline
p_X & 1/2& 1/2 & 1
endarray
$$
LetâÂÂs construct the table of the marginals to find $P(X=x,Z=z) = p_XZ(x,z)$.
$$
beginarrayccc
p_XZ& 0 & 1 & p_Z \
0 & ? & 0 & ?\
1 & ? & ? & ?\
2 & 0 & ? & ? \
hline
p_X & 1/2& 1/2 & 1
endarray
$$
Observe that $p_Z(0) = p_XY(0,0) = 1/4$ as $Z = 0 iff X = 0 cap Y = 0$. The same holds for $p_Z(2) = p_XY(1,1) = 1/4$. Then $p_Z(1) = 1 - 1/4 - 1/4 = 1/2$.
$$
beginarrayccc
p_XZ& 0 & 1 & p_Z \
0 & ? & 0 & 1/4\
1 & ? & ? & 1/2\
2 & 0 & ? & 1/4 \
hline
p_X & 1/2& 1/2 & 1
endarray
$$
It is easy to resolve all the $?$ inside the table.
$$
beginarrayccc
p_XZ& 0 & 1 & p_Z \
0 & 1/4 & 0 & 1/4\
1 & 1/4 & 1/4 & 1/2\
2 & 0 & 1/4 & 1/4 \
hline
p_X & 1/2& 1/2 & 1
endarray
$$
Note that $p_XZ = p_YZ$.
Note also that $p_XY(x,y) = p_XYZ(x,y,0)+p_XYZ(x,y,1)+p_XYZ(x,y,2)$, then:
[
beginalign
p_XY(0,0) = p_XYZ(0,0,0) = 1/4 \
p_XY(0,1) = p_XYZ(0,1,1) = 1/4 \
p_XY(1,0) = p_XYZ(1,0,1) = 1/4 \
p_XY(1,1) = p_XYZ(1,1,2) = 1/4 \
endalign
]
Supplement - The conditional mutual information $I(X,Y|Z)$ can be calculated using the formula shown in Wikipedia.
$$I(X,Y|Z)=sum_zin Zsum_yin Ysum_xin Xp_XYZ(x,y,z)logfracp_Z(z)p_XYZ(x,y,z)p_XZ(x,z)p_YZ(y,z)$$
Then
[
beginalign
I(X,Y|Z) &= frac14sum_zin Zsum_yin Ysum_xin Xlogfrac1,/,4cdot p_Z(z)1,/,4 cdot 1,/,4 \
&= frac14sum_zin Zsum_yin Ysum_xin Xlogleft(4 , p_Z(z)right) \
&= sum_zin Zlogleft(4 , p_Z(z)right) & left[text$sum_ysum_x f(z)=4f(z)$right] \
&= logfrac44 + logfrac42 + logfrac44 \
&= log 2
endalign
]
If $log = log_2$ then
[I(X,Y|Z)= 1 text bit]
but if $I(X;Y|Z)=H(X|Z)-H(X|Y,Z)=[frac-14log_21+0+frac-14log_2frac12+frac-14log_2frac12]-[frac14log_2frac14 times 4]=frac12 -2=$ negative value,but the I(X;Y|Z) should be semipositive ,$gt$.
â Shine Sun
Jul 30 at 4:48
@ShineSun just edited the answer to calculate what you requested. I'm going to investigate your formula right now.
â Giulio Scattolin
Jul 30 at 10:05
may i ask why is $I(X,Y|Z)=frac14sum_zin Zsum_yin Ysum_xin Xlogfrac1/8[p_Z(x,z)]^2 =frac12sum_zin Zsum_xin Xlogfrac1/8[p_Z(x,z)]^2$ ?Why is $sum_y=2$
â Shine Sun
Jul 30 at 11:31
I think I did something wrong there, from another calculation it comes out $I(X,Y|Z)=2+2-2-1.5=0.5 text bits$. I'm going to figure out that and improve comments ASAP
â Giulio Scattolin
Jul 30 at 11:35
It's a bit embarassing, I made a mistake while copying the formula from Wikipedia. Moreover now I get $I(X,Y|Z)=1 text bit$ from the corrected version. I'm afraid the assumption $P(X|Y,Z)=P(X,Z)$ is wrong and I also misused a formula in the calculation I cited in my previous comment.. I've updated the answer in the meanwhile.
â Giulio Scattolin
Jul 30 at 14:06
add a comment |Â
up vote
1
down vote
accepted
Since $X perp Y$ then $P(X,Y) = P(X) , P(Y) = 1/4$.
$$
beginarrayccc
p_XY& 0 & 1 & p_Y \
0 & 1/4 & 1/4 & 1/2\
1 & 1/4 & 1/4 & 1/2\
hline
p_X & 1/2& 1/2 & 1
endarray
$$
LetâÂÂs construct the table of the marginals to find $P(X=x,Z=z) = p_XZ(x,z)$.
$$
beginarrayccc
p_XZ& 0 & 1 & p_Z \
0 & ? & 0 & ?\
1 & ? & ? & ?\
2 & 0 & ? & ? \
hline
p_X & 1/2& 1/2 & 1
endarray
$$
Observe that $p_Z(0) = p_XY(0,0) = 1/4$ as $Z = 0 iff X = 0 cap Y = 0$. The same holds for $p_Z(2) = p_XY(1,1) = 1/4$. Then $p_Z(1) = 1 - 1/4 - 1/4 = 1/2$.
$$
beginarrayccc
p_XZ& 0 & 1 & p_Z \
0 & ? & 0 & 1/4\
1 & ? & ? & 1/2\
2 & 0 & ? & 1/4 \
hline
p_X & 1/2& 1/2 & 1
endarray
$$
It is easy to resolve all the $?$ inside the table.
$$
beginarrayccc
p_XZ& 0 & 1 & p_Z \
0 & 1/4 & 0 & 1/4\
1 & 1/4 & 1/4 & 1/2\
2 & 0 & 1/4 & 1/4 \
hline
p_X & 1/2& 1/2 & 1
endarray
$$
Note that $p_XZ = p_YZ$.
Note also that $p_XY(x,y) = p_XYZ(x,y,0)+p_XYZ(x,y,1)+p_XYZ(x,y,2)$, then:
[
beginalign
p_XY(0,0) = p_XYZ(0,0,0) = 1/4 \
p_XY(0,1) = p_XYZ(0,1,1) = 1/4 \
p_XY(1,0) = p_XYZ(1,0,1) = 1/4 \
p_XY(1,1) = p_XYZ(1,1,2) = 1/4 \
endalign
]
Supplement - The conditional mutual information $I(X,Y|Z)$ can be calculated using the formula shown in Wikipedia.
$$I(X,Y|Z)=sum_zin Zsum_yin Ysum_xin Xp_XYZ(x,y,z)logfracp_Z(z)p_XYZ(x,y,z)p_XZ(x,z)p_YZ(y,z)$$
Then
[
beginalign
I(X,Y|Z) &= frac14sum_zin Zsum_yin Ysum_xin Xlogfrac1,/,4cdot p_Z(z)1,/,4 cdot 1,/,4 \
&= frac14sum_zin Zsum_yin Ysum_xin Xlogleft(4 , p_Z(z)right) \
&= sum_zin Zlogleft(4 , p_Z(z)right) & left[text$sum_ysum_x f(z)=4f(z)$right] \
&= logfrac44 + logfrac42 + logfrac44 \
&= log 2
endalign
]
If $log = log_2$ then
[I(X,Y|Z)= 1 text bit]
but if $I(X;Y|Z)=H(X|Z)-H(X|Y,Z)=[frac-14log_21+0+frac-14log_2frac12+frac-14log_2frac12]-[frac14log_2frac14 times 4]=frac12 -2=$ negative value,but the I(X;Y|Z) should be semipositive ,$gt$.
â Shine Sun
Jul 30 at 4:48
@ShineSun just edited the answer to calculate what you requested. I'm going to investigate your formula right now.
â Giulio Scattolin
Jul 30 at 10:05
may i ask why is $I(X,Y|Z)=frac14sum_zin Zsum_yin Ysum_xin Xlogfrac1/8[p_Z(x,z)]^2 =frac12sum_zin Zsum_xin Xlogfrac1/8[p_Z(x,z)]^2$ ?Why is $sum_y=2$
â Shine Sun
Jul 30 at 11:31
I think I did something wrong there, from another calculation it comes out $I(X,Y|Z)=2+2-2-1.5=0.5 text bits$. I'm going to figure out that and improve comments ASAP
â Giulio Scattolin
Jul 30 at 11:35
It's a bit embarassing, I made a mistake while copying the formula from Wikipedia. Moreover now I get $I(X,Y|Z)=1 text bit$ from the corrected version. I'm afraid the assumption $P(X|Y,Z)=P(X,Z)$ is wrong and I also misused a formula in the calculation I cited in my previous comment.. I've updated the answer in the meanwhile.
â Giulio Scattolin
Jul 30 at 14:06
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Since $X perp Y$ then $P(X,Y) = P(X) , P(Y) = 1/4$.
$$
beginarrayccc
p_XY& 0 & 1 & p_Y \
0 & 1/4 & 1/4 & 1/2\
1 & 1/4 & 1/4 & 1/2\
hline
p_X & 1/2& 1/2 & 1
endarray
$$
LetâÂÂs construct the table of the marginals to find $P(X=x,Z=z) = p_XZ(x,z)$.
$$
beginarrayccc
p_XZ& 0 & 1 & p_Z \
0 & ? & 0 & ?\
1 & ? & ? & ?\
2 & 0 & ? & ? \
hline
p_X & 1/2& 1/2 & 1
endarray
$$
Observe that $p_Z(0) = p_XY(0,0) = 1/4$ as $Z = 0 iff X = 0 cap Y = 0$. The same holds for $p_Z(2) = p_XY(1,1) = 1/4$. Then $p_Z(1) = 1 - 1/4 - 1/4 = 1/2$.
$$
beginarrayccc
p_XZ& 0 & 1 & p_Z \
0 & ? & 0 & 1/4\
1 & ? & ? & 1/2\
2 & 0 & ? & 1/4 \
hline
p_X & 1/2& 1/2 & 1
endarray
$$
It is easy to resolve all the $?$ inside the table.
$$
beginarrayccc
p_XZ& 0 & 1 & p_Z \
0 & 1/4 & 0 & 1/4\
1 & 1/4 & 1/4 & 1/2\
2 & 0 & 1/4 & 1/4 \
hline
p_X & 1/2& 1/2 & 1
endarray
$$
Note that $p_XZ = p_YZ$.
Note also that $p_XY(x,y) = p_XYZ(x,y,0)+p_XYZ(x,y,1)+p_XYZ(x,y,2)$, then:
[
beginalign
p_XY(0,0) = p_XYZ(0,0,0) = 1/4 \
p_XY(0,1) = p_XYZ(0,1,1) = 1/4 \
p_XY(1,0) = p_XYZ(1,0,1) = 1/4 \
p_XY(1,1) = p_XYZ(1,1,2) = 1/4 \
endalign
]
Supplement - The conditional mutual information $I(X,Y|Z)$ can be calculated using the formula shown in Wikipedia.
$$I(X,Y|Z)=sum_zin Zsum_yin Ysum_xin Xp_XYZ(x,y,z)logfracp_Z(z)p_XYZ(x,y,z)p_XZ(x,z)p_YZ(y,z)$$
Then
[
beginalign
I(X,Y|Z) &= frac14sum_zin Zsum_yin Ysum_xin Xlogfrac1,/,4cdot p_Z(z)1,/,4 cdot 1,/,4 \
&= frac14sum_zin Zsum_yin Ysum_xin Xlogleft(4 , p_Z(z)right) \
&= sum_zin Zlogleft(4 , p_Z(z)right) & left[text$sum_ysum_x f(z)=4f(z)$right] \
&= logfrac44 + logfrac42 + logfrac44 \
&= log 2
endalign
]
If $log = log_2$ then
[I(X,Y|Z)= 1 text bit]
Since $X perp Y$ then $P(X,Y) = P(X) , P(Y) = 1/4$.
$$
beginarrayccc
p_XY& 0 & 1 & p_Y \
0 & 1/4 & 1/4 & 1/2\
1 & 1/4 & 1/4 & 1/2\
hline
p_X & 1/2& 1/2 & 1
endarray
$$
LetâÂÂs construct the table of the marginals to find $P(X=x,Z=z) = p_XZ(x,z)$.
$$
beginarrayccc
p_XZ& 0 & 1 & p_Z \
0 & ? & 0 & ?\
1 & ? & ? & ?\
2 & 0 & ? & ? \
hline
p_X & 1/2& 1/2 & 1
endarray
$$
Observe that $p_Z(0) = p_XY(0,0) = 1/4$ as $Z = 0 iff X = 0 cap Y = 0$. The same holds for $p_Z(2) = p_XY(1,1) = 1/4$. Then $p_Z(1) = 1 - 1/4 - 1/4 = 1/2$.
$$
beginarrayccc
p_XZ& 0 & 1 & p_Z \
0 & ? & 0 & 1/4\
1 & ? & ? & 1/2\
2 & 0 & ? & 1/4 \
hline
p_X & 1/2& 1/2 & 1
endarray
$$
It is easy to resolve all the $?$ inside the table.
$$
beginarrayccc
p_XZ& 0 & 1 & p_Z \
0 & 1/4 & 0 & 1/4\
1 & 1/4 & 1/4 & 1/2\
2 & 0 & 1/4 & 1/4 \
hline
p_X & 1/2& 1/2 & 1
endarray
$$
Note that $p_XZ = p_YZ$.
Note also that $p_XY(x,y) = p_XYZ(x,y,0)+p_XYZ(x,y,1)+p_XYZ(x,y,2)$, then:
[
beginalign
p_XY(0,0) = p_XYZ(0,0,0) = 1/4 \
p_XY(0,1) = p_XYZ(0,1,1) = 1/4 \
p_XY(1,0) = p_XYZ(1,0,1) = 1/4 \
p_XY(1,1) = p_XYZ(1,1,2) = 1/4 \
endalign
]
Supplement - The conditional mutual information $I(X,Y|Z)$ can be calculated using the formula shown in Wikipedia.
$$I(X,Y|Z)=sum_zin Zsum_yin Ysum_xin Xp_XYZ(x,y,z)logfracp_Z(z)p_XYZ(x,y,z)p_XZ(x,z)p_YZ(y,z)$$
Then
[
beginalign
I(X,Y|Z) &= frac14sum_zin Zsum_yin Ysum_xin Xlogfrac1,/,4cdot p_Z(z)1,/,4 cdot 1,/,4 \
&= frac14sum_zin Zsum_yin Ysum_xin Xlogleft(4 , p_Z(z)right) \
&= sum_zin Zlogleft(4 , p_Z(z)right) & left[text$sum_ysum_x f(z)=4f(z)$right] \
&= logfrac44 + logfrac42 + logfrac44 \
&= log 2
endalign
]
If $log = log_2$ then
[I(X,Y|Z)= 1 text bit]
edited Jul 31 at 13:58
answered Jul 30 at 1:35
Giulio Scattolin
15619
15619
but if $I(X;Y|Z)=H(X|Z)-H(X|Y,Z)=[frac-14log_21+0+frac-14log_2frac12+frac-14log_2frac12]-[frac14log_2frac14 times 4]=frac12 -2=$ negative value,but the I(X;Y|Z) should be semipositive ,$gt$.
â Shine Sun
Jul 30 at 4:48
@ShineSun just edited the answer to calculate what you requested. I'm going to investigate your formula right now.
â Giulio Scattolin
Jul 30 at 10:05
may i ask why is $I(X,Y|Z)=frac14sum_zin Zsum_yin Ysum_xin Xlogfrac1/8[p_Z(x,z)]^2 =frac12sum_zin Zsum_xin Xlogfrac1/8[p_Z(x,z)]^2$ ?Why is $sum_y=2$
â Shine Sun
Jul 30 at 11:31
I think I did something wrong there, from another calculation it comes out $I(X,Y|Z)=2+2-2-1.5=0.5 text bits$. I'm going to figure out that and improve comments ASAP
â Giulio Scattolin
Jul 30 at 11:35
It's a bit embarassing, I made a mistake while copying the formula from Wikipedia. Moreover now I get $I(X,Y|Z)=1 text bit$ from the corrected version. I'm afraid the assumption $P(X|Y,Z)=P(X,Z)$ is wrong and I also misused a formula in the calculation I cited in my previous comment.. I've updated the answer in the meanwhile.
â Giulio Scattolin
Jul 30 at 14:06
add a comment |Â
but if $I(X;Y|Z)=H(X|Z)-H(X|Y,Z)=[frac-14log_21+0+frac-14log_2frac12+frac-14log_2frac12]-[frac14log_2frac14 times 4]=frac12 -2=$ negative value,but the I(X;Y|Z) should be semipositive ,$gt$.
â Shine Sun
Jul 30 at 4:48
@ShineSun just edited the answer to calculate what you requested. I'm going to investigate your formula right now.
â Giulio Scattolin
Jul 30 at 10:05
may i ask why is $I(X,Y|Z)=frac14sum_zin Zsum_yin Ysum_xin Xlogfrac1/8[p_Z(x,z)]^2 =frac12sum_zin Zsum_xin Xlogfrac1/8[p_Z(x,z)]^2$ ?Why is $sum_y=2$
â Shine Sun
Jul 30 at 11:31
I think I did something wrong there, from another calculation it comes out $I(X,Y|Z)=2+2-2-1.5=0.5 text bits$. I'm going to figure out that and improve comments ASAP
â Giulio Scattolin
Jul 30 at 11:35
It's a bit embarassing, I made a mistake while copying the formula from Wikipedia. Moreover now I get $I(X,Y|Z)=1 text bit$ from the corrected version. I'm afraid the assumption $P(X|Y,Z)=P(X,Z)$ is wrong and I also misused a formula in the calculation I cited in my previous comment.. I've updated the answer in the meanwhile.
â Giulio Scattolin
Jul 30 at 14:06
but if $I(X;Y|Z)=H(X|Z)-H(X|Y,Z)=[frac-14log_21+0+frac-14log_2frac12+frac-14log_2frac12]-[frac14log_2frac14 times 4]=frac12 -2=$ negative value,but the I(X;Y|Z) should be semipositive ,$gt$.
â Shine Sun
Jul 30 at 4:48
but if $I(X;Y|Z)=H(X|Z)-H(X|Y,Z)=[frac-14log_21+0+frac-14log_2frac12+frac-14log_2frac12]-[frac14log_2frac14 times 4]=frac12 -2=$ negative value,but the I(X;Y|Z) should be semipositive ,$gt$.
â Shine Sun
Jul 30 at 4:48
@ShineSun just edited the answer to calculate what you requested. I'm going to investigate your formula right now.
â Giulio Scattolin
Jul 30 at 10:05
@ShineSun just edited the answer to calculate what you requested. I'm going to investigate your formula right now.
â Giulio Scattolin
Jul 30 at 10:05
may i ask why is $I(X,Y|Z)=frac14sum_zin Zsum_yin Ysum_xin Xlogfrac1/8[p_Z(x,z)]^2 =frac12sum_zin Zsum_xin Xlogfrac1/8[p_Z(x,z)]^2$ ?Why is $sum_y=2$
â Shine Sun
Jul 30 at 11:31
may i ask why is $I(X,Y|Z)=frac14sum_zin Zsum_yin Ysum_xin Xlogfrac1/8[p_Z(x,z)]^2 =frac12sum_zin Zsum_xin Xlogfrac1/8[p_Z(x,z)]^2$ ?Why is $sum_y=2$
â Shine Sun
Jul 30 at 11:31
I think I did something wrong there, from another calculation it comes out $I(X,Y|Z)=2+2-2-1.5=0.5 text bits$. I'm going to figure out that and improve comments ASAP
â Giulio Scattolin
Jul 30 at 11:35
I think I did something wrong there, from another calculation it comes out $I(X,Y|Z)=2+2-2-1.5=0.5 text bits$. I'm going to figure out that and improve comments ASAP
â Giulio Scattolin
Jul 30 at 11:35
It's a bit embarassing, I made a mistake while copying the formula from Wikipedia. Moreover now I get $I(X,Y|Z)=1 text bit$ from the corrected version. I'm afraid the assumption $P(X|Y,Z)=P(X,Z)$ is wrong and I also misused a formula in the calculation I cited in my previous comment.. I've updated the answer in the meanwhile.
â Giulio Scattolin
Jul 30 at 14:06
It's a bit embarassing, I made a mistake while copying the formula from Wikipedia. Moreover now I get $I(X,Y|Z)=1 text bit$ from the corrected version. I'm afraid the assumption $P(X|Y,Z)=P(X,Z)$ is wrong and I also misused a formula in the calculation I cited in my previous comment.. I've updated the answer in the meanwhile.
â Giulio Scattolin
Jul 30 at 14:06
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2866549%2fcalculating-the-px-y-z-px-z-and-pxy-z-when-z-xy%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password