Action of $S_d$ in $V^otimes d$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite












In some books is defined an action of $S_d$ in $V^otimes d$ as $sigma (v_1otimes cdots otimes v_d)=v_sigma^-1(1)otimes cdots otimes v_sigma^-1(d)$ but then
$tau sigma(v_1otimes cdots otimes v_d)=tau (v_sigma^-1(1)otimes cdots otimes v_sigma^-1(d))=v_tau^-1 sigma^-1(1)otimes cdots otimes v_tau^-1 sigma^-1(d)=sigma tau (v_1otimes cdots otimes v_d)$.....







share|cite|improve this question















  • 1




    How about $$tau sigma(v_1otimes cdots otimes v_d)=tau (v_sigma^-1(1)otimes cdots otimes v_sigma^-1(d))=v_sigma^-1tau^-1 (1)otimes cdots otimes v_ sigma^-1tau^-1(d)=tausigma (v_1otimes cdots otimes v_d)?$$
    – Lord Shark the Unknown
    Jul 24 at 18:03










  • @Kato if you think about it, the way the action is defined means that whatever is in the i'th place in the pure tensor is transformed into the $sigma(i)$'th place. With this interpretation I think the answer to your inquiry becomes clear.
    – Gal Porat
    Jul 24 at 18:09















up vote
2
down vote

favorite












In some books is defined an action of $S_d$ in $V^otimes d$ as $sigma (v_1otimes cdots otimes v_d)=v_sigma^-1(1)otimes cdots otimes v_sigma^-1(d)$ but then
$tau sigma(v_1otimes cdots otimes v_d)=tau (v_sigma^-1(1)otimes cdots otimes v_sigma^-1(d))=v_tau^-1 sigma^-1(1)otimes cdots otimes v_tau^-1 sigma^-1(d)=sigma tau (v_1otimes cdots otimes v_d)$.....







share|cite|improve this question















  • 1




    How about $$tau sigma(v_1otimes cdots otimes v_d)=tau (v_sigma^-1(1)otimes cdots otimes v_sigma^-1(d))=v_sigma^-1tau^-1 (1)otimes cdots otimes v_ sigma^-1tau^-1(d)=tausigma (v_1otimes cdots otimes v_d)?$$
    – Lord Shark the Unknown
    Jul 24 at 18:03










  • @Kato if you think about it, the way the action is defined means that whatever is in the i'th place in the pure tensor is transformed into the $sigma(i)$'th place. With this interpretation I think the answer to your inquiry becomes clear.
    – Gal Porat
    Jul 24 at 18:09













up vote
2
down vote

favorite









up vote
2
down vote

favorite











In some books is defined an action of $S_d$ in $V^otimes d$ as $sigma (v_1otimes cdots otimes v_d)=v_sigma^-1(1)otimes cdots otimes v_sigma^-1(d)$ but then
$tau sigma(v_1otimes cdots otimes v_d)=tau (v_sigma^-1(1)otimes cdots otimes v_sigma^-1(d))=v_tau^-1 sigma^-1(1)otimes cdots otimes v_tau^-1 sigma^-1(d)=sigma tau (v_1otimes cdots otimes v_d)$.....







share|cite|improve this question











In some books is defined an action of $S_d$ in $V^otimes d$ as $sigma (v_1otimes cdots otimes v_d)=v_sigma^-1(1)otimes cdots otimes v_sigma^-1(d)$ but then
$tau sigma(v_1otimes cdots otimes v_d)=tau (v_sigma^-1(1)otimes cdots otimes v_sigma^-1(d))=v_tau^-1 sigma^-1(1)otimes cdots otimes v_tau^-1 sigma^-1(d)=sigma tau (v_1otimes cdots otimes v_d)$.....









share|cite|improve this question










share|cite|improve this question




share|cite|improve this question









asked Jul 24 at 17:55









Kato

384




384







  • 1




    How about $$tau sigma(v_1otimes cdots otimes v_d)=tau (v_sigma^-1(1)otimes cdots otimes v_sigma^-1(d))=v_sigma^-1tau^-1 (1)otimes cdots otimes v_ sigma^-1tau^-1(d)=tausigma (v_1otimes cdots otimes v_d)?$$
    – Lord Shark the Unknown
    Jul 24 at 18:03










  • @Kato if you think about it, the way the action is defined means that whatever is in the i'th place in the pure tensor is transformed into the $sigma(i)$'th place. With this interpretation I think the answer to your inquiry becomes clear.
    – Gal Porat
    Jul 24 at 18:09













  • 1




    How about $$tau sigma(v_1otimes cdots otimes v_d)=tau (v_sigma^-1(1)otimes cdots otimes v_sigma^-1(d))=v_sigma^-1tau^-1 (1)otimes cdots otimes v_ sigma^-1tau^-1(d)=tausigma (v_1otimes cdots otimes v_d)?$$
    – Lord Shark the Unknown
    Jul 24 at 18:03










  • @Kato if you think about it, the way the action is defined means that whatever is in the i'th place in the pure tensor is transformed into the $sigma(i)$'th place. With this interpretation I think the answer to your inquiry becomes clear.
    – Gal Porat
    Jul 24 at 18:09








1




1




How about $$tau sigma(v_1otimes cdots otimes v_d)=tau (v_sigma^-1(1)otimes cdots otimes v_sigma^-1(d))=v_sigma^-1tau^-1 (1)otimes cdots otimes v_ sigma^-1tau^-1(d)=tausigma (v_1otimes cdots otimes v_d)?$$
– Lord Shark the Unknown
Jul 24 at 18:03




How about $$tau sigma(v_1otimes cdots otimes v_d)=tau (v_sigma^-1(1)otimes cdots otimes v_sigma^-1(d))=v_sigma^-1tau^-1 (1)otimes cdots otimes v_ sigma^-1tau^-1(d)=tausigma (v_1otimes cdots otimes v_d)?$$
– Lord Shark the Unknown
Jul 24 at 18:03












@Kato if you think about it, the way the action is defined means that whatever is in the i'th place in the pure tensor is transformed into the $sigma(i)$'th place. With this interpretation I think the answer to your inquiry becomes clear.
– Gal Porat
Jul 24 at 18:09





@Kato if you think about it, the way the action is defined means that whatever is in the i'th place in the pure tensor is transformed into the $sigma(i)$'th place. With this interpretation I think the answer to your inquiry becomes clear.
– Gal Porat
Jul 24 at 18:09











1 Answer
1






active

oldest

votes

















up vote
4
down vote













No, that's not how it works.



To understand how $tau$ affects the $v_sigma^-1(1)otimescdotsotimes v_sigma^-1(d)$, you have to represent it in the same form. So, it would be like $w_1otimescdotsotimes w_d$. One possible choice (and the end result does not depend on the choice you make, so, you can take the one you like) would be $w_1=v_sigma^-1(1)$, ..., $w_d=v_sigma^-1(d)$. In short, $w_k=v_sigma^-1(k)$



Then
$$tau(sigma(v_1otimescdotsotimes v_d))=tau(v_sigma^-1otimescdotsotimes v_sigma^-1(d))=tau(w_1otimescdotsotimes w_d)=w_tau^-1(1)otimescdotsotimes w_tau^-1(d)$$
But, since $w_k=v_sigma^-1(k)$, in particular $w_tau^-1(1)=v_sigma^-1(tau^-1(1))$, $w_tau^-1(2)=v_sigma^-1(tau^-1(2))$ and so on. Therefore
$$tau(sigma(v_1otimescdotsotimes v_d))=v_sigma^-1(tau^-1(1))otimescdotsotimes v_sigma^-1(tau^-1(d))=v_(tausigma)^-1(1)otimescdotsotimes v_(tausigma)^-1(d)=(tausigma)(v_1otimescdotsotimes v_d)$$






share|cite|improve this answer





















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2861605%2faction-of-s-d-in-v-otimes-d%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    4
    down vote













    No, that's not how it works.



    To understand how $tau$ affects the $v_sigma^-1(1)otimescdotsotimes v_sigma^-1(d)$, you have to represent it in the same form. So, it would be like $w_1otimescdotsotimes w_d$. One possible choice (and the end result does not depend on the choice you make, so, you can take the one you like) would be $w_1=v_sigma^-1(1)$, ..., $w_d=v_sigma^-1(d)$. In short, $w_k=v_sigma^-1(k)$



    Then
    $$tau(sigma(v_1otimescdotsotimes v_d))=tau(v_sigma^-1otimescdotsotimes v_sigma^-1(d))=tau(w_1otimescdotsotimes w_d)=w_tau^-1(1)otimescdotsotimes w_tau^-1(d)$$
    But, since $w_k=v_sigma^-1(k)$, in particular $w_tau^-1(1)=v_sigma^-1(tau^-1(1))$, $w_tau^-1(2)=v_sigma^-1(tau^-1(2))$ and so on. Therefore
    $$tau(sigma(v_1otimescdotsotimes v_d))=v_sigma^-1(tau^-1(1))otimescdotsotimes v_sigma^-1(tau^-1(d))=v_(tausigma)^-1(1)otimescdotsotimes v_(tausigma)^-1(d)=(tausigma)(v_1otimescdotsotimes v_d)$$






    share|cite|improve this answer

























      up vote
      4
      down vote













      No, that's not how it works.



      To understand how $tau$ affects the $v_sigma^-1(1)otimescdotsotimes v_sigma^-1(d)$, you have to represent it in the same form. So, it would be like $w_1otimescdotsotimes w_d$. One possible choice (and the end result does not depend on the choice you make, so, you can take the one you like) would be $w_1=v_sigma^-1(1)$, ..., $w_d=v_sigma^-1(d)$. In short, $w_k=v_sigma^-1(k)$



      Then
      $$tau(sigma(v_1otimescdotsotimes v_d))=tau(v_sigma^-1otimescdotsotimes v_sigma^-1(d))=tau(w_1otimescdotsotimes w_d)=w_tau^-1(1)otimescdotsotimes w_tau^-1(d)$$
      But, since $w_k=v_sigma^-1(k)$, in particular $w_tau^-1(1)=v_sigma^-1(tau^-1(1))$, $w_tau^-1(2)=v_sigma^-1(tau^-1(2))$ and so on. Therefore
      $$tau(sigma(v_1otimescdotsotimes v_d))=v_sigma^-1(tau^-1(1))otimescdotsotimes v_sigma^-1(tau^-1(d))=v_(tausigma)^-1(1)otimescdotsotimes v_(tausigma)^-1(d)=(tausigma)(v_1otimescdotsotimes v_d)$$






      share|cite|improve this answer























        up vote
        4
        down vote










        up vote
        4
        down vote









        No, that's not how it works.



        To understand how $tau$ affects the $v_sigma^-1(1)otimescdotsotimes v_sigma^-1(d)$, you have to represent it in the same form. So, it would be like $w_1otimescdotsotimes w_d$. One possible choice (and the end result does not depend on the choice you make, so, you can take the one you like) would be $w_1=v_sigma^-1(1)$, ..., $w_d=v_sigma^-1(d)$. In short, $w_k=v_sigma^-1(k)$



        Then
        $$tau(sigma(v_1otimescdotsotimes v_d))=tau(v_sigma^-1otimescdotsotimes v_sigma^-1(d))=tau(w_1otimescdotsotimes w_d)=w_tau^-1(1)otimescdotsotimes w_tau^-1(d)$$
        But, since $w_k=v_sigma^-1(k)$, in particular $w_tau^-1(1)=v_sigma^-1(tau^-1(1))$, $w_tau^-1(2)=v_sigma^-1(tau^-1(2))$ and so on. Therefore
        $$tau(sigma(v_1otimescdotsotimes v_d))=v_sigma^-1(tau^-1(1))otimescdotsotimes v_sigma^-1(tau^-1(d))=v_(tausigma)^-1(1)otimescdotsotimes v_(tausigma)^-1(d)=(tausigma)(v_1otimescdotsotimes v_d)$$






        share|cite|improve this answer













        No, that's not how it works.



        To understand how $tau$ affects the $v_sigma^-1(1)otimescdotsotimes v_sigma^-1(d)$, you have to represent it in the same form. So, it would be like $w_1otimescdotsotimes w_d$. One possible choice (and the end result does not depend on the choice you make, so, you can take the one you like) would be $w_1=v_sigma^-1(1)$, ..., $w_d=v_sigma^-1(d)$. In short, $w_k=v_sigma^-1(k)$



        Then
        $$tau(sigma(v_1otimescdotsotimes v_d))=tau(v_sigma^-1otimescdotsotimes v_sigma^-1(d))=tau(w_1otimescdotsotimes w_d)=w_tau^-1(1)otimescdotsotimes w_tau^-1(d)$$
        But, since $w_k=v_sigma^-1(k)$, in particular $w_tau^-1(1)=v_sigma^-1(tau^-1(1))$, $w_tau^-1(2)=v_sigma^-1(tau^-1(2))$ and so on. Therefore
        $$tau(sigma(v_1otimescdotsotimes v_d))=v_sigma^-1(tau^-1(1))otimescdotsotimes v_sigma^-1(tau^-1(d))=v_(tausigma)^-1(1)otimescdotsotimes v_(tausigma)^-1(d)=(tausigma)(v_1otimescdotsotimes v_d)$$







        share|cite|improve this answer













        share|cite|improve this answer



        share|cite|improve this answer











        answered Jul 24 at 18:15









        MigMit

        27113




        27113






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2861605%2faction-of-s-d-in-v-otimes-d%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What is the equation of a 3D cone with generalised tilt?

            Color the edges and diagonals of a regular polygon

            Relationship between determinant of matrix and determinant of adjoint?