An extended real value function is measurable (proof verification)

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite













enter image description here




For the second proof, it says "$xin X: f_1(x) > alpha = x in X : f(x) >alpha cup B$". $f_1(x)$ cannot be equal to $-infty$. Then, why is it union of $B$?







share|cite|improve this question





















  • Could you explain why?
    – Sihyun Kim
    Jul 30 at 12:23










  • Consider the two cases for $f_1(x)$.
    – xbh
    Jul 30 at 12:28














up vote
0
down vote

favorite













enter image description here




For the second proof, it says "$xin X: f_1(x) > alpha = x in X : f(x) >alpha cup B$". $f_1(x)$ cannot be equal to $-infty$. Then, why is it union of $B$?







share|cite|improve this question





















  • Could you explain why?
    – Sihyun Kim
    Jul 30 at 12:23










  • Consider the two cases for $f_1(x)$.
    – xbh
    Jul 30 at 12:28












up vote
0
down vote

favorite









up vote
0
down vote

favorite












enter image description here




For the second proof, it says "$xin X: f_1(x) > alpha = x in X : f(x) >alpha cup B$". $f_1(x)$ cannot be equal to $-infty$. Then, why is it union of $B$?







share|cite|improve this question














enter image description here




For the second proof, it says "$xin X: f_1(x) > alpha = x in X : f(x) >alpha cup B$". $f_1(x)$ cannot be equal to $-infty$. Then, why is it union of $B$?









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 30 at 12:35









amWhy

189k25219431




189k25219431









asked Jul 30 at 12:17









Sihyun Kim

701210




701210











  • Could you explain why?
    – Sihyun Kim
    Jul 30 at 12:23










  • Consider the two cases for $f_1(x)$.
    – xbh
    Jul 30 at 12:28
















  • Could you explain why?
    – Sihyun Kim
    Jul 30 at 12:23










  • Consider the two cases for $f_1(x)$.
    – xbh
    Jul 30 at 12:28















Could you explain why?
– Sihyun Kim
Jul 30 at 12:23




Could you explain why?
– Sihyun Kim
Jul 30 at 12:23












Consider the two cases for $f_1(x)$.
– xbh
Jul 30 at 12:28




Consider the two cases for $f_1(x)$.
– xbh
Jul 30 at 12:28










3 Answers
3






active

oldest

votes

















up vote
0
down vote



accepted










For e.g. $alpha=-1$ we find that the following statements are equivalent:



  • $f_1(x)>-1$

  • $f_1(x)in(-1,infty)$

  • $f_1(x)=0vee f_1(x)in(-1,0)cup(0,infty)$

  • $f(x)in-infty,0,inftyvee f(x)in(-1,0)cup(0,infty)$

  • $f(x)in(-1,infty]vee f(x)=-infty$

  • $f(x)>-1vee xin B$





share|cite|improve this answer





















  • What does the symbol V mean?
    – Sihyun Kim
    Jul 31 at 9:33







  • 1




    It stands for "or".
    – drhab
    Jul 31 at 9:34

















up vote
0
down vote













If $f(x) = -infty$, then $f_1(x) = 0$.






share|cite|improve this answer




























    up vote
    0
    down vote













    If $alpha < 0$ and $f_1(x) > alpha$, then either $f(x)$ is finite and $f(x) = f_1(x) > alpha$ or $f(x) = infty$ or $f(x) = -infty$. Thus,
    $$x: f_1(x) > alpha subset x: f(x) > alpha cup A cup B.$$
    But $A subset x: f(x) > alpha$, so this reduces to
    $$x: f_1(x) > alpha subset x: f(x) > alpha cup B.$$
    Conversely, if $alpha<0$ and either $f(x)> alpha$ or $f(x) = -infty$, then, in the former case $f(x)$ is either finite or = $infty$, whence $f_1(x) = f(x)$ or $0$, respectively, whence $f_1(x)> alpha$; and in the latter case $f_1(x)=0 > alpha$. So,
    $$x: f_1(x) > alpha supset x: f(x) > alpha cup B.$$






    share|cite|improve this answer





















      Your Answer




      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: false,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );








       

      draft saved


      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2866959%2fan-extended-real-value-function-is-measurable-proof-verification%23new-answer', 'question_page');

      );

      Post as a guest






























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      0
      down vote



      accepted










      For e.g. $alpha=-1$ we find that the following statements are equivalent:



      • $f_1(x)>-1$

      • $f_1(x)in(-1,infty)$

      • $f_1(x)=0vee f_1(x)in(-1,0)cup(0,infty)$

      • $f(x)in-infty,0,inftyvee f(x)in(-1,0)cup(0,infty)$

      • $f(x)in(-1,infty]vee f(x)=-infty$

      • $f(x)>-1vee xin B$





      share|cite|improve this answer





















      • What does the symbol V mean?
        – Sihyun Kim
        Jul 31 at 9:33







      • 1




        It stands for "or".
        – drhab
        Jul 31 at 9:34














      up vote
      0
      down vote



      accepted










      For e.g. $alpha=-1$ we find that the following statements are equivalent:



      • $f_1(x)>-1$

      • $f_1(x)in(-1,infty)$

      • $f_1(x)=0vee f_1(x)in(-1,0)cup(0,infty)$

      • $f(x)in-infty,0,inftyvee f(x)in(-1,0)cup(0,infty)$

      • $f(x)in(-1,infty]vee f(x)=-infty$

      • $f(x)>-1vee xin B$





      share|cite|improve this answer





















      • What does the symbol V mean?
        – Sihyun Kim
        Jul 31 at 9:33







      • 1




        It stands for "or".
        – drhab
        Jul 31 at 9:34












      up vote
      0
      down vote



      accepted







      up vote
      0
      down vote



      accepted






      For e.g. $alpha=-1$ we find that the following statements are equivalent:



      • $f_1(x)>-1$

      • $f_1(x)in(-1,infty)$

      • $f_1(x)=0vee f_1(x)in(-1,0)cup(0,infty)$

      • $f(x)in-infty,0,inftyvee f(x)in(-1,0)cup(0,infty)$

      • $f(x)in(-1,infty]vee f(x)=-infty$

      • $f(x)>-1vee xin B$





      share|cite|improve this answer













      For e.g. $alpha=-1$ we find that the following statements are equivalent:



      • $f_1(x)>-1$

      • $f_1(x)in(-1,infty)$

      • $f_1(x)=0vee f_1(x)in(-1,0)cup(0,infty)$

      • $f(x)in-infty,0,inftyvee f(x)in(-1,0)cup(0,infty)$

      • $f(x)in(-1,infty]vee f(x)=-infty$

      • $f(x)>-1vee xin B$






      share|cite|improve this answer













      share|cite|improve this answer



      share|cite|improve this answer











      answered Jul 30 at 12:51









      drhab

      85.9k540118




      85.9k540118











      • What does the symbol V mean?
        – Sihyun Kim
        Jul 31 at 9:33







      • 1




        It stands for "or".
        – drhab
        Jul 31 at 9:34
















      • What does the symbol V mean?
        – Sihyun Kim
        Jul 31 at 9:33







      • 1




        It stands for "or".
        – drhab
        Jul 31 at 9:34















      What does the symbol V mean?
      – Sihyun Kim
      Jul 31 at 9:33





      What does the symbol V mean?
      – Sihyun Kim
      Jul 31 at 9:33





      1




      1




      It stands for "or".
      – drhab
      Jul 31 at 9:34




      It stands for "or".
      – drhab
      Jul 31 at 9:34










      up vote
      0
      down vote













      If $f(x) = -infty$, then $f_1(x) = 0$.






      share|cite|improve this answer

























        up vote
        0
        down vote













        If $f(x) = -infty$, then $f_1(x) = 0$.






        share|cite|improve this answer























          up vote
          0
          down vote










          up vote
          0
          down vote









          If $f(x) = -infty$, then $f_1(x) = 0$.






          share|cite|improve this answer













          If $f(x) = -infty$, then $f_1(x) = 0$.







          share|cite|improve this answer













          share|cite|improve this answer



          share|cite|improve this answer











          answered Jul 30 at 12:23









          Hurkyl

          107k9112253




          107k9112253




















              up vote
              0
              down vote













              If $alpha < 0$ and $f_1(x) > alpha$, then either $f(x)$ is finite and $f(x) = f_1(x) > alpha$ or $f(x) = infty$ or $f(x) = -infty$. Thus,
              $$x: f_1(x) > alpha subset x: f(x) > alpha cup A cup B.$$
              But $A subset x: f(x) > alpha$, so this reduces to
              $$x: f_1(x) > alpha subset x: f(x) > alpha cup B.$$
              Conversely, if $alpha<0$ and either $f(x)> alpha$ or $f(x) = -infty$, then, in the former case $f(x)$ is either finite or = $infty$, whence $f_1(x) = f(x)$ or $0$, respectively, whence $f_1(x)> alpha$; and in the latter case $f_1(x)=0 > alpha$. So,
              $$x: f_1(x) > alpha supset x: f(x) > alpha cup B.$$






              share|cite|improve this answer

























                up vote
                0
                down vote













                If $alpha < 0$ and $f_1(x) > alpha$, then either $f(x)$ is finite and $f(x) = f_1(x) > alpha$ or $f(x) = infty$ or $f(x) = -infty$. Thus,
                $$x: f_1(x) > alpha subset x: f(x) > alpha cup A cup B.$$
                But $A subset x: f(x) > alpha$, so this reduces to
                $$x: f_1(x) > alpha subset x: f(x) > alpha cup B.$$
                Conversely, if $alpha<0$ and either $f(x)> alpha$ or $f(x) = -infty$, then, in the former case $f(x)$ is either finite or = $infty$, whence $f_1(x) = f(x)$ or $0$, respectively, whence $f_1(x)> alpha$; and in the latter case $f_1(x)=0 > alpha$. So,
                $$x: f_1(x) > alpha supset x: f(x) > alpha cup B.$$






                share|cite|improve this answer























                  up vote
                  0
                  down vote










                  up vote
                  0
                  down vote









                  If $alpha < 0$ and $f_1(x) > alpha$, then either $f(x)$ is finite and $f(x) = f_1(x) > alpha$ or $f(x) = infty$ or $f(x) = -infty$. Thus,
                  $$x: f_1(x) > alpha subset x: f(x) > alpha cup A cup B.$$
                  But $A subset x: f(x) > alpha$, so this reduces to
                  $$x: f_1(x) > alpha subset x: f(x) > alpha cup B.$$
                  Conversely, if $alpha<0$ and either $f(x)> alpha$ or $f(x) = -infty$, then, in the former case $f(x)$ is either finite or = $infty$, whence $f_1(x) = f(x)$ or $0$, respectively, whence $f_1(x)> alpha$; and in the latter case $f_1(x)=0 > alpha$. So,
                  $$x: f_1(x) > alpha supset x: f(x) > alpha cup B.$$






                  share|cite|improve this answer













                  If $alpha < 0$ and $f_1(x) > alpha$, then either $f(x)$ is finite and $f(x) = f_1(x) > alpha$ or $f(x) = infty$ or $f(x) = -infty$. Thus,
                  $$x: f_1(x) > alpha subset x: f(x) > alpha cup A cup B.$$
                  But $A subset x: f(x) > alpha$, so this reduces to
                  $$x: f_1(x) > alpha subset x: f(x) > alpha cup B.$$
                  Conversely, if $alpha<0$ and either $f(x)> alpha$ or $f(x) = -infty$, then, in the former case $f(x)$ is either finite or = $infty$, whence $f_1(x) = f(x)$ or $0$, respectively, whence $f_1(x)> alpha$; and in the latter case $f_1(x)=0 > alpha$. So,
                  $$x: f_1(x) > alpha supset x: f(x) > alpha cup B.$$







                  share|cite|improve this answer













                  share|cite|improve this answer



                  share|cite|improve this answer











                  answered Jul 30 at 12:37









                  aduh

                  4,30031238




                  4,30031238






















                       

                      draft saved


                      draft discarded


























                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2866959%2fan-extended-real-value-function-is-measurable-proof-verification%23new-answer', 'question_page');

                      );

                      Post as a guest













































































                      Comments

                      Popular posts from this blog

                      What is the equation of a 3D cone with generalised tilt?

                      Color the edges and diagonals of a regular polygon

                      Relationship between determinant of matrix and determinant of adjoint?