An extended real value function is measurable (proof verification)
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
For the second proof, it says "$xin X: f_1(x) > alpha = x in X : f(x) >alpha cup B$". $f_1(x)$ cannot be equal to $-infty$. Then, why is it union of $B$?
measure-theory proof-explanation
add a comment |Â
up vote
0
down vote
favorite
For the second proof, it says "$xin X: f_1(x) > alpha = x in X : f(x) >alpha cup B$". $f_1(x)$ cannot be equal to $-infty$. Then, why is it union of $B$?
measure-theory proof-explanation
Could you explain why?
– Sihyun Kim
Jul 30 at 12:23
Consider the two cases for $f_1(x)$.
– xbh
Jul 30 at 12:28
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
For the second proof, it says "$xin X: f_1(x) > alpha = x in X : f(x) >alpha cup B$". $f_1(x)$ cannot be equal to $-infty$. Then, why is it union of $B$?
measure-theory proof-explanation
For the second proof, it says "$xin X: f_1(x) > alpha = x in X : f(x) >alpha cup B$". $f_1(x)$ cannot be equal to $-infty$. Then, why is it union of $B$?
measure-theory proof-explanation
edited Jul 30 at 12:35


amWhy
189k25219431
189k25219431
asked Jul 30 at 12:17
Sihyun Kim
701210
701210
Could you explain why?
– Sihyun Kim
Jul 30 at 12:23
Consider the two cases for $f_1(x)$.
– xbh
Jul 30 at 12:28
add a comment |Â
Could you explain why?
– Sihyun Kim
Jul 30 at 12:23
Consider the two cases for $f_1(x)$.
– xbh
Jul 30 at 12:28
Could you explain why?
– Sihyun Kim
Jul 30 at 12:23
Could you explain why?
– Sihyun Kim
Jul 30 at 12:23
Consider the two cases for $f_1(x)$.
– xbh
Jul 30 at 12:28
Consider the two cases for $f_1(x)$.
– xbh
Jul 30 at 12:28
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
0
down vote
accepted
For e.g. $alpha=-1$ we find that the following statements are equivalent:
- $f_1(x)>-1$
- $f_1(x)in(-1,infty)$
- $f_1(x)=0vee f_1(x)in(-1,0)cup(0,infty)$
- $f(x)in-infty,0,inftyvee f(x)in(-1,0)cup(0,infty)$
- $f(x)in(-1,infty]vee f(x)=-infty$
- $f(x)>-1vee xin B$
What does the symbol V mean?
– Sihyun Kim
Jul 31 at 9:33
1
It stands for "or".
– drhab
Jul 31 at 9:34
add a comment |Â
up vote
0
down vote
If $f(x) = -infty$, then $f_1(x) = 0$.
add a comment |Â
up vote
0
down vote
If $alpha < 0$ and $f_1(x) > alpha$, then either $f(x)$ is finite and $f(x) = f_1(x) > alpha$ or $f(x) = infty$ or $f(x) = -infty$. Thus,
$$x: f_1(x) > alpha subset x: f(x) > alpha cup A cup B.$$
But $A subset x: f(x) > alpha$, so this reduces to
$$x: f_1(x) > alpha subset x: f(x) > alpha cup B.$$
Conversely, if $alpha<0$ and either $f(x)> alpha$ or $f(x) = -infty$, then, in the former case $f(x)$ is either finite or = $infty$, whence $f_1(x) = f(x)$ or $0$, respectively, whence $f_1(x)> alpha$; and in the latter case $f_1(x)=0 > alpha$. So,
$$x: f_1(x) > alpha supset x: f(x) > alpha cup B.$$
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
For e.g. $alpha=-1$ we find that the following statements are equivalent:
- $f_1(x)>-1$
- $f_1(x)in(-1,infty)$
- $f_1(x)=0vee f_1(x)in(-1,0)cup(0,infty)$
- $f(x)in-infty,0,inftyvee f(x)in(-1,0)cup(0,infty)$
- $f(x)in(-1,infty]vee f(x)=-infty$
- $f(x)>-1vee xin B$
What does the symbol V mean?
– Sihyun Kim
Jul 31 at 9:33
1
It stands for "or".
– drhab
Jul 31 at 9:34
add a comment |Â
up vote
0
down vote
accepted
For e.g. $alpha=-1$ we find that the following statements are equivalent:
- $f_1(x)>-1$
- $f_1(x)in(-1,infty)$
- $f_1(x)=0vee f_1(x)in(-1,0)cup(0,infty)$
- $f(x)in-infty,0,inftyvee f(x)in(-1,0)cup(0,infty)$
- $f(x)in(-1,infty]vee f(x)=-infty$
- $f(x)>-1vee xin B$
What does the symbol V mean?
– Sihyun Kim
Jul 31 at 9:33
1
It stands for "or".
– drhab
Jul 31 at 9:34
add a comment |Â
up vote
0
down vote
accepted
up vote
0
down vote
accepted
For e.g. $alpha=-1$ we find that the following statements are equivalent:
- $f_1(x)>-1$
- $f_1(x)in(-1,infty)$
- $f_1(x)=0vee f_1(x)in(-1,0)cup(0,infty)$
- $f(x)in-infty,0,inftyvee f(x)in(-1,0)cup(0,infty)$
- $f(x)in(-1,infty]vee f(x)=-infty$
- $f(x)>-1vee xin B$
For e.g. $alpha=-1$ we find that the following statements are equivalent:
- $f_1(x)>-1$
- $f_1(x)in(-1,infty)$
- $f_1(x)=0vee f_1(x)in(-1,0)cup(0,infty)$
- $f(x)in-infty,0,inftyvee f(x)in(-1,0)cup(0,infty)$
- $f(x)in(-1,infty]vee f(x)=-infty$
- $f(x)>-1vee xin B$
answered Jul 30 at 12:51


drhab
85.9k540118
85.9k540118
What does the symbol V mean?
– Sihyun Kim
Jul 31 at 9:33
1
It stands for "or".
– drhab
Jul 31 at 9:34
add a comment |Â
What does the symbol V mean?
– Sihyun Kim
Jul 31 at 9:33
1
It stands for "or".
– drhab
Jul 31 at 9:34
What does the symbol V mean?
– Sihyun Kim
Jul 31 at 9:33
What does the symbol V mean?
– Sihyun Kim
Jul 31 at 9:33
1
1
It stands for "or".
– drhab
Jul 31 at 9:34
It stands for "or".
– drhab
Jul 31 at 9:34
add a comment |Â
up vote
0
down vote
If $f(x) = -infty$, then $f_1(x) = 0$.
add a comment |Â
up vote
0
down vote
If $f(x) = -infty$, then $f_1(x) = 0$.
add a comment |Â
up vote
0
down vote
up vote
0
down vote
If $f(x) = -infty$, then $f_1(x) = 0$.
If $f(x) = -infty$, then $f_1(x) = 0$.
answered Jul 30 at 12:23
Hurkyl
107k9112253
107k9112253
add a comment |Â
add a comment |Â
up vote
0
down vote
If $alpha < 0$ and $f_1(x) > alpha$, then either $f(x)$ is finite and $f(x) = f_1(x) > alpha$ or $f(x) = infty$ or $f(x) = -infty$. Thus,
$$x: f_1(x) > alpha subset x: f(x) > alpha cup A cup B.$$
But $A subset x: f(x) > alpha$, so this reduces to
$$x: f_1(x) > alpha subset x: f(x) > alpha cup B.$$
Conversely, if $alpha<0$ and either $f(x)> alpha$ or $f(x) = -infty$, then, in the former case $f(x)$ is either finite or = $infty$, whence $f_1(x) = f(x)$ or $0$, respectively, whence $f_1(x)> alpha$; and in the latter case $f_1(x)=0 > alpha$. So,
$$x: f_1(x) > alpha supset x: f(x) > alpha cup B.$$
add a comment |Â
up vote
0
down vote
If $alpha < 0$ and $f_1(x) > alpha$, then either $f(x)$ is finite and $f(x) = f_1(x) > alpha$ or $f(x) = infty$ or $f(x) = -infty$. Thus,
$$x: f_1(x) > alpha subset x: f(x) > alpha cup A cup B.$$
But $A subset x: f(x) > alpha$, so this reduces to
$$x: f_1(x) > alpha subset x: f(x) > alpha cup B.$$
Conversely, if $alpha<0$ and either $f(x)> alpha$ or $f(x) = -infty$, then, in the former case $f(x)$ is either finite or = $infty$, whence $f_1(x) = f(x)$ or $0$, respectively, whence $f_1(x)> alpha$; and in the latter case $f_1(x)=0 > alpha$. So,
$$x: f_1(x) > alpha supset x: f(x) > alpha cup B.$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
If $alpha < 0$ and $f_1(x) > alpha$, then either $f(x)$ is finite and $f(x) = f_1(x) > alpha$ or $f(x) = infty$ or $f(x) = -infty$. Thus,
$$x: f_1(x) > alpha subset x: f(x) > alpha cup A cup B.$$
But $A subset x: f(x) > alpha$, so this reduces to
$$x: f_1(x) > alpha subset x: f(x) > alpha cup B.$$
Conversely, if $alpha<0$ and either $f(x)> alpha$ or $f(x) = -infty$, then, in the former case $f(x)$ is either finite or = $infty$, whence $f_1(x) = f(x)$ or $0$, respectively, whence $f_1(x)> alpha$; and in the latter case $f_1(x)=0 > alpha$. So,
$$x: f_1(x) > alpha supset x: f(x) > alpha cup B.$$
If $alpha < 0$ and $f_1(x) > alpha$, then either $f(x)$ is finite and $f(x) = f_1(x) > alpha$ or $f(x) = infty$ or $f(x) = -infty$. Thus,
$$x: f_1(x) > alpha subset x: f(x) > alpha cup A cup B.$$
But $A subset x: f(x) > alpha$, so this reduces to
$$x: f_1(x) > alpha subset x: f(x) > alpha cup B.$$
Conversely, if $alpha<0$ and either $f(x)> alpha$ or $f(x) = -infty$, then, in the former case $f(x)$ is either finite or = $infty$, whence $f_1(x) = f(x)$ or $0$, respectively, whence $f_1(x)> alpha$; and in the latter case $f_1(x)=0 > alpha$. So,
$$x: f_1(x) > alpha supset x: f(x) > alpha cup B.$$
answered Jul 30 at 12:37
aduh
4,30031238
4,30031238
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2866959%2fan-extended-real-value-function-is-measurable-proof-verification%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Could you explain why?
– Sihyun Kim
Jul 30 at 12:23
Consider the two cases for $f_1(x)$.
– xbh
Jul 30 at 12:28