An inequality with substitution

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












If $a,b,c$ positive real numbers, then I have to prove $ frac 118 sumlimits_cycl^ fraca^2b^2 + sumlimits_cycl^ frac a2a+b+c ge frac 1112$



We have that $frac 118 sumlimits_cycl^ fraca^2b^2 ge frac 318 = frac 16$



If we assume that $x=2a+b+c,y=a+2b+c,z=a+b+2c,$ then $a=frac3x-y-z4,b=frac3y-x-z4,c=frac3z-x-y4,$ and



$sumlimits_cycl^ frac a2a+b+c = frac14 [9 - sumlimits_cycl^ (frac xy+frac yx)]$



Since
$sumlimits_cycl^ (frac xy+frac yx) ge 6$



so we have



$ frac34 ge sumlimits_cycl^ frac a2a+b+c = frac14 [9 - sumlimits_cycl^ (frac xy+frac yx)]$



and I stuck there. Thank you







share|cite|improve this question





















  • Use C-S ans S-S method.
    – Michael Rozenberg
    Jul 17 at 12:02










  • What is the S-S method @MichaelRozenberg? Any particular help please?
    – Steven
    Jul 18 at 11:10










  • It's the SOS-Schur method.
    – Michael Rozenberg
    Jul 18 at 21:09










  • How can I apply it?
    – Steven
    Jul 18 at 21:52














up vote
1
down vote

favorite












If $a,b,c$ positive real numbers, then I have to prove $ frac 118 sumlimits_cycl^ fraca^2b^2 + sumlimits_cycl^ frac a2a+b+c ge frac 1112$



We have that $frac 118 sumlimits_cycl^ fraca^2b^2 ge frac 318 = frac 16$



If we assume that $x=2a+b+c,y=a+2b+c,z=a+b+2c,$ then $a=frac3x-y-z4,b=frac3y-x-z4,c=frac3z-x-y4,$ and



$sumlimits_cycl^ frac a2a+b+c = frac14 [9 - sumlimits_cycl^ (frac xy+frac yx)]$



Since
$sumlimits_cycl^ (frac xy+frac yx) ge 6$



so we have



$ frac34 ge sumlimits_cycl^ frac a2a+b+c = frac14 [9 - sumlimits_cycl^ (frac xy+frac yx)]$



and I stuck there. Thank you







share|cite|improve this question





















  • Use C-S ans S-S method.
    – Michael Rozenberg
    Jul 17 at 12:02










  • What is the S-S method @MichaelRozenberg? Any particular help please?
    – Steven
    Jul 18 at 11:10










  • It's the SOS-Schur method.
    – Michael Rozenberg
    Jul 18 at 21:09










  • How can I apply it?
    – Steven
    Jul 18 at 21:52












up vote
1
down vote

favorite









up vote
1
down vote

favorite











If $a,b,c$ positive real numbers, then I have to prove $ frac 118 sumlimits_cycl^ fraca^2b^2 + sumlimits_cycl^ frac a2a+b+c ge frac 1112$



We have that $frac 118 sumlimits_cycl^ fraca^2b^2 ge frac 318 = frac 16$



If we assume that $x=2a+b+c,y=a+2b+c,z=a+b+2c,$ then $a=frac3x-y-z4,b=frac3y-x-z4,c=frac3z-x-y4,$ and



$sumlimits_cycl^ frac a2a+b+c = frac14 [9 - sumlimits_cycl^ (frac xy+frac yx)]$



Since
$sumlimits_cycl^ (frac xy+frac yx) ge 6$



so we have



$ frac34 ge sumlimits_cycl^ frac a2a+b+c = frac14 [9 - sumlimits_cycl^ (frac xy+frac yx)]$



and I stuck there. Thank you







share|cite|improve this question













If $a,b,c$ positive real numbers, then I have to prove $ frac 118 sumlimits_cycl^ fraca^2b^2 + sumlimits_cycl^ frac a2a+b+c ge frac 1112$



We have that $frac 118 sumlimits_cycl^ fraca^2b^2 ge frac 318 = frac 16$



If we assume that $x=2a+b+c,y=a+2b+c,z=a+b+2c,$ then $a=frac3x-y-z4,b=frac3y-x-z4,c=frac3z-x-y4,$ and



$sumlimits_cycl^ frac a2a+b+c = frac14 [9 - sumlimits_cycl^ (frac xy+frac yx)]$



Since
$sumlimits_cycl^ (frac xy+frac yx) ge 6$



so we have



$ frac34 ge sumlimits_cycl^ frac a2a+b+c = frac14 [9 - sumlimits_cycl^ (frac xy+frac yx)]$



and I stuck there. Thank you









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 19 at 13:37









Michael Rozenberg

88.1k1579180




88.1k1579180









asked Jul 16 at 17:16









Steven

1




1











  • Use C-S ans S-S method.
    – Michael Rozenberg
    Jul 17 at 12:02










  • What is the S-S method @MichaelRozenberg? Any particular help please?
    – Steven
    Jul 18 at 11:10










  • It's the SOS-Schur method.
    – Michael Rozenberg
    Jul 18 at 21:09










  • How can I apply it?
    – Steven
    Jul 18 at 21:52
















  • Use C-S ans S-S method.
    – Michael Rozenberg
    Jul 17 at 12:02










  • What is the S-S method @MichaelRozenberg? Any particular help please?
    – Steven
    Jul 18 at 11:10










  • It's the SOS-Schur method.
    – Michael Rozenberg
    Jul 18 at 21:09










  • How can I apply it?
    – Steven
    Jul 18 at 21:52















Use C-S ans S-S method.
– Michael Rozenberg
Jul 17 at 12:02




Use C-S ans S-S method.
– Michael Rozenberg
Jul 17 at 12:02












What is the S-S method @MichaelRozenberg? Any particular help please?
– Steven
Jul 18 at 11:10




What is the S-S method @MichaelRozenberg? Any particular help please?
– Steven
Jul 18 at 11:10












It's the SOS-Schur method.
– Michael Rozenberg
Jul 18 at 21:09




It's the SOS-Schur method.
– Michael Rozenberg
Jul 18 at 21:09












How can I apply it?
– Steven
Jul 18 at 21:52




How can I apply it?
– Steven
Jul 18 at 21:52










1 Answer
1






active

oldest

votes

















up vote
2
down vote



accepted










Let $c=maxa,b,c$.



Since by C-S $$sum_cycfraca2a+b+c=sum_cycfraca^22a^2+ab+acgeqfrac(a+b+c)^2sumlimits_cyc(2a^2+ab+ac)=frac(a+b+c)^22sumlimits_cyc(a^2+ab),$$
it's enough to prove that
$$frac118left(fraca^2b^2+fracb^2c^2+fracc^2a^2right)+frac(a+b+c)^22sumlimits_cyc(a^2+ab)geqfrac1112$$ or
$$fraca^2b^2+fracb^2c^2+fracc^2a^2-3geqfrac272-frac9(a+b+c)^2sumlimits_cyc(a^2+ab)$$ or
$$fraca^2b^2+fracb^2a^2-2+fracb^2c^2+fracc^2a^2-fracb^2a^2-1geqfrac9sumlimits_cyc(a^2-ab)2sumlimits_cyc(a^2+ab)$$ or
$$frac(a^2-b^2)^2a^2b^2+frac(c^2-a^2)(c^2-b^2)a^2c^2geqfrac9((a-b)^2+(c-a)(c-b))2sumlimits_cyc(a^2+ab).$$
Id est, it's enough to prove that
$$frac(a+b)^2a^2b^2geqfrac92sumlimits_cyc(a^2+ab)$$ and
$$frac(a+c)(b+c)a^2c^2geqfrac92sumlimits_cyc(a^2+ab).$$
Both these inequalities we can prove by AM-GM.
Indeed, $$2(a+b)^2sum_cyc(a^2+ab)geq2(a+b)^2(a^2+ab+b^2)geq2cdot4cdot3a^2b^2>9a^2b^2 $$ and
$$2(a+c)(b+c)sum_cyc(a^2+ab)geq2(a+c)c(a^2+ac+c^2)geq2c(a+a)cdot3ac=12a^2c^2>9a^2c^2.$$
Done!






share|cite|improve this answer





















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2853620%2fan-inequality-with-substitution%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    2
    down vote



    accepted










    Let $c=maxa,b,c$.



    Since by C-S $$sum_cycfraca2a+b+c=sum_cycfraca^22a^2+ab+acgeqfrac(a+b+c)^2sumlimits_cyc(2a^2+ab+ac)=frac(a+b+c)^22sumlimits_cyc(a^2+ab),$$
    it's enough to prove that
    $$frac118left(fraca^2b^2+fracb^2c^2+fracc^2a^2right)+frac(a+b+c)^22sumlimits_cyc(a^2+ab)geqfrac1112$$ or
    $$fraca^2b^2+fracb^2c^2+fracc^2a^2-3geqfrac272-frac9(a+b+c)^2sumlimits_cyc(a^2+ab)$$ or
    $$fraca^2b^2+fracb^2a^2-2+fracb^2c^2+fracc^2a^2-fracb^2a^2-1geqfrac9sumlimits_cyc(a^2-ab)2sumlimits_cyc(a^2+ab)$$ or
    $$frac(a^2-b^2)^2a^2b^2+frac(c^2-a^2)(c^2-b^2)a^2c^2geqfrac9((a-b)^2+(c-a)(c-b))2sumlimits_cyc(a^2+ab).$$
    Id est, it's enough to prove that
    $$frac(a+b)^2a^2b^2geqfrac92sumlimits_cyc(a^2+ab)$$ and
    $$frac(a+c)(b+c)a^2c^2geqfrac92sumlimits_cyc(a^2+ab).$$
    Both these inequalities we can prove by AM-GM.
    Indeed, $$2(a+b)^2sum_cyc(a^2+ab)geq2(a+b)^2(a^2+ab+b^2)geq2cdot4cdot3a^2b^2>9a^2b^2 $$ and
    $$2(a+c)(b+c)sum_cyc(a^2+ab)geq2(a+c)c(a^2+ac+c^2)geq2c(a+a)cdot3ac=12a^2c^2>9a^2c^2.$$
    Done!






    share|cite|improve this answer

























      up vote
      2
      down vote



      accepted










      Let $c=maxa,b,c$.



      Since by C-S $$sum_cycfraca2a+b+c=sum_cycfraca^22a^2+ab+acgeqfrac(a+b+c)^2sumlimits_cyc(2a^2+ab+ac)=frac(a+b+c)^22sumlimits_cyc(a^2+ab),$$
      it's enough to prove that
      $$frac118left(fraca^2b^2+fracb^2c^2+fracc^2a^2right)+frac(a+b+c)^22sumlimits_cyc(a^2+ab)geqfrac1112$$ or
      $$fraca^2b^2+fracb^2c^2+fracc^2a^2-3geqfrac272-frac9(a+b+c)^2sumlimits_cyc(a^2+ab)$$ or
      $$fraca^2b^2+fracb^2a^2-2+fracb^2c^2+fracc^2a^2-fracb^2a^2-1geqfrac9sumlimits_cyc(a^2-ab)2sumlimits_cyc(a^2+ab)$$ or
      $$frac(a^2-b^2)^2a^2b^2+frac(c^2-a^2)(c^2-b^2)a^2c^2geqfrac9((a-b)^2+(c-a)(c-b))2sumlimits_cyc(a^2+ab).$$
      Id est, it's enough to prove that
      $$frac(a+b)^2a^2b^2geqfrac92sumlimits_cyc(a^2+ab)$$ and
      $$frac(a+c)(b+c)a^2c^2geqfrac92sumlimits_cyc(a^2+ab).$$
      Both these inequalities we can prove by AM-GM.
      Indeed, $$2(a+b)^2sum_cyc(a^2+ab)geq2(a+b)^2(a^2+ab+b^2)geq2cdot4cdot3a^2b^2>9a^2b^2 $$ and
      $$2(a+c)(b+c)sum_cyc(a^2+ab)geq2(a+c)c(a^2+ac+c^2)geq2c(a+a)cdot3ac=12a^2c^2>9a^2c^2.$$
      Done!






      share|cite|improve this answer























        up vote
        2
        down vote



        accepted







        up vote
        2
        down vote



        accepted






        Let $c=maxa,b,c$.



        Since by C-S $$sum_cycfraca2a+b+c=sum_cycfraca^22a^2+ab+acgeqfrac(a+b+c)^2sumlimits_cyc(2a^2+ab+ac)=frac(a+b+c)^22sumlimits_cyc(a^2+ab),$$
        it's enough to prove that
        $$frac118left(fraca^2b^2+fracb^2c^2+fracc^2a^2right)+frac(a+b+c)^22sumlimits_cyc(a^2+ab)geqfrac1112$$ or
        $$fraca^2b^2+fracb^2c^2+fracc^2a^2-3geqfrac272-frac9(a+b+c)^2sumlimits_cyc(a^2+ab)$$ or
        $$fraca^2b^2+fracb^2a^2-2+fracb^2c^2+fracc^2a^2-fracb^2a^2-1geqfrac9sumlimits_cyc(a^2-ab)2sumlimits_cyc(a^2+ab)$$ or
        $$frac(a^2-b^2)^2a^2b^2+frac(c^2-a^2)(c^2-b^2)a^2c^2geqfrac9((a-b)^2+(c-a)(c-b))2sumlimits_cyc(a^2+ab).$$
        Id est, it's enough to prove that
        $$frac(a+b)^2a^2b^2geqfrac92sumlimits_cyc(a^2+ab)$$ and
        $$frac(a+c)(b+c)a^2c^2geqfrac92sumlimits_cyc(a^2+ab).$$
        Both these inequalities we can prove by AM-GM.
        Indeed, $$2(a+b)^2sum_cyc(a^2+ab)geq2(a+b)^2(a^2+ab+b^2)geq2cdot4cdot3a^2b^2>9a^2b^2 $$ and
        $$2(a+c)(b+c)sum_cyc(a^2+ab)geq2(a+c)c(a^2+ac+c^2)geq2c(a+a)cdot3ac=12a^2c^2>9a^2c^2.$$
        Done!






        share|cite|improve this answer













        Let $c=maxa,b,c$.



        Since by C-S $$sum_cycfraca2a+b+c=sum_cycfraca^22a^2+ab+acgeqfrac(a+b+c)^2sumlimits_cyc(2a^2+ab+ac)=frac(a+b+c)^22sumlimits_cyc(a^2+ab),$$
        it's enough to prove that
        $$frac118left(fraca^2b^2+fracb^2c^2+fracc^2a^2right)+frac(a+b+c)^22sumlimits_cyc(a^2+ab)geqfrac1112$$ or
        $$fraca^2b^2+fracb^2c^2+fracc^2a^2-3geqfrac272-frac9(a+b+c)^2sumlimits_cyc(a^2+ab)$$ or
        $$fraca^2b^2+fracb^2a^2-2+fracb^2c^2+fracc^2a^2-fracb^2a^2-1geqfrac9sumlimits_cyc(a^2-ab)2sumlimits_cyc(a^2+ab)$$ or
        $$frac(a^2-b^2)^2a^2b^2+frac(c^2-a^2)(c^2-b^2)a^2c^2geqfrac9((a-b)^2+(c-a)(c-b))2sumlimits_cyc(a^2+ab).$$
        Id est, it's enough to prove that
        $$frac(a+b)^2a^2b^2geqfrac92sumlimits_cyc(a^2+ab)$$ and
        $$frac(a+c)(b+c)a^2c^2geqfrac92sumlimits_cyc(a^2+ab).$$
        Both these inequalities we can prove by AM-GM.
        Indeed, $$2(a+b)^2sum_cyc(a^2+ab)geq2(a+b)^2(a^2+ab+b^2)geq2cdot4cdot3a^2b^2>9a^2b^2 $$ and
        $$2(a+c)(b+c)sum_cyc(a^2+ab)geq2(a+c)c(a^2+ac+c^2)geq2c(a+a)cdot3ac=12a^2c^2>9a^2c^2.$$
        Done!







        share|cite|improve this answer













        share|cite|improve this answer



        share|cite|improve this answer











        answered Jul 19 at 13:35









        Michael Rozenberg

        88.1k1579180




        88.1k1579180






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2853620%2fan-inequality-with-substitution%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What is the equation of a 3D cone with generalised tilt?

            Relationship between determinant of matrix and determinant of adjoint?

            Color the edges and diagonals of a regular polygon