Proof of this integration shortcut: $int_a^b fracdxsqrt(x-a)(b-x)=pi$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
9
down vote

favorite
1












I came across this as one of the shortcuts in my textbook without any proof.

When $bgt a$,




$$intlimits_a^b dfracdxsqrt(x-a)(b-x)=pi$$





My attempt :



I notice that the the denominator is $0$ at both the bounds. I thought of substituting $x=a+(b-a)t$ so that the integral becomes
$$intlimits_0^1 dfracdtsqrtt(1-t)$$



This doesn't look simple, but I'm wondering if the answer can be seen using symmetry/geometry ?







share|cite|improve this question

















  • 2




    It's better to reduce to the $(a,b)=(-1,1)$ case rather than the $(0,1)$ case.
    – Lord Shark the Unknown
    Jul 16 at 17:59










  • @InterstellarProbe here is an example
    – rsadhvika
    Jul 16 at 18:04











  • @InterstellarProbe So much the worse for Wolfie!
    – Lord Shark the Unknown
    Jul 16 at 18:06






  • 1




    $intlimits_0^1 dfracdtsqrtt(1-t)=beta(dfrac14,dfrac14)=pi$
    – Nosrati
    Jul 16 at 18:16






  • 1




    maybe try the substitution $t=cos theta$ or $t=sintheta$? I haven't tried it but the denominator would simplify
    – usr0192
    Jul 16 at 18:18














up vote
9
down vote

favorite
1












I came across this as one of the shortcuts in my textbook without any proof.

When $bgt a$,




$$intlimits_a^b dfracdxsqrt(x-a)(b-x)=pi$$





My attempt :



I notice that the the denominator is $0$ at both the bounds. I thought of substituting $x=a+(b-a)t$ so that the integral becomes
$$intlimits_0^1 dfracdtsqrtt(1-t)$$



This doesn't look simple, but I'm wondering if the answer can be seen using symmetry/geometry ?







share|cite|improve this question

















  • 2




    It's better to reduce to the $(a,b)=(-1,1)$ case rather than the $(0,1)$ case.
    – Lord Shark the Unknown
    Jul 16 at 17:59










  • @InterstellarProbe here is an example
    – rsadhvika
    Jul 16 at 18:04











  • @InterstellarProbe So much the worse for Wolfie!
    – Lord Shark the Unknown
    Jul 16 at 18:06






  • 1




    $intlimits_0^1 dfracdtsqrtt(1-t)=beta(dfrac14,dfrac14)=pi$
    – Nosrati
    Jul 16 at 18:16






  • 1




    maybe try the substitution $t=cos theta$ or $t=sintheta$? I haven't tried it but the denominator would simplify
    – usr0192
    Jul 16 at 18:18












up vote
9
down vote

favorite
1









up vote
9
down vote

favorite
1






1





I came across this as one of the shortcuts in my textbook without any proof.

When $bgt a$,




$$intlimits_a^b dfracdxsqrt(x-a)(b-x)=pi$$





My attempt :



I notice that the the denominator is $0$ at both the bounds. I thought of substituting $x=a+(b-a)t$ so that the integral becomes
$$intlimits_0^1 dfracdtsqrtt(1-t)$$



This doesn't look simple, but I'm wondering if the answer can be seen using symmetry/geometry ?







share|cite|improve this question













I came across this as one of the shortcuts in my textbook without any proof.

When $bgt a$,




$$intlimits_a^b dfracdxsqrt(x-a)(b-x)=pi$$





My attempt :



I notice that the the denominator is $0$ at both the bounds. I thought of substituting $x=a+(b-a)t$ so that the integral becomes
$$intlimits_0^1 dfracdtsqrtt(1-t)$$



This doesn't look simple, but I'm wondering if the answer can be seen using symmetry/geometry ?









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 16 at 18:31









Nosrati

19.8k41644




19.8k41644









asked Jul 16 at 17:57









rsadhvika

1,4891026




1,4891026







  • 2




    It's better to reduce to the $(a,b)=(-1,1)$ case rather than the $(0,1)$ case.
    – Lord Shark the Unknown
    Jul 16 at 17:59










  • @InterstellarProbe here is an example
    – rsadhvika
    Jul 16 at 18:04











  • @InterstellarProbe So much the worse for Wolfie!
    – Lord Shark the Unknown
    Jul 16 at 18:06






  • 1




    $intlimits_0^1 dfracdtsqrtt(1-t)=beta(dfrac14,dfrac14)=pi$
    – Nosrati
    Jul 16 at 18:16






  • 1




    maybe try the substitution $t=cos theta$ or $t=sintheta$? I haven't tried it but the denominator would simplify
    – usr0192
    Jul 16 at 18:18












  • 2




    It's better to reduce to the $(a,b)=(-1,1)$ case rather than the $(0,1)$ case.
    – Lord Shark the Unknown
    Jul 16 at 17:59










  • @InterstellarProbe here is an example
    – rsadhvika
    Jul 16 at 18:04











  • @InterstellarProbe So much the worse for Wolfie!
    – Lord Shark the Unknown
    Jul 16 at 18:06






  • 1




    $intlimits_0^1 dfracdtsqrtt(1-t)=beta(dfrac14,dfrac14)=pi$
    – Nosrati
    Jul 16 at 18:16






  • 1




    maybe try the substitution $t=cos theta$ or $t=sintheta$? I haven't tried it but the denominator would simplify
    – usr0192
    Jul 16 at 18:18







2




2




It's better to reduce to the $(a,b)=(-1,1)$ case rather than the $(0,1)$ case.
– Lord Shark the Unknown
Jul 16 at 17:59




It's better to reduce to the $(a,b)=(-1,1)$ case rather than the $(0,1)$ case.
– Lord Shark the Unknown
Jul 16 at 17:59












@InterstellarProbe here is an example
– rsadhvika
Jul 16 at 18:04





@InterstellarProbe here is an example
– rsadhvika
Jul 16 at 18:04













@InterstellarProbe So much the worse for Wolfie!
– Lord Shark the Unknown
Jul 16 at 18:06




@InterstellarProbe So much the worse for Wolfie!
– Lord Shark the Unknown
Jul 16 at 18:06




1




1




$intlimits_0^1 dfracdtsqrtt(1-t)=beta(dfrac14,dfrac14)=pi$
– Nosrati
Jul 16 at 18:16




$intlimits_0^1 dfracdtsqrtt(1-t)=beta(dfrac14,dfrac14)=pi$
– Nosrati
Jul 16 at 18:16




1




1




maybe try the substitution $t=cos theta$ or $t=sintheta$? I haven't tried it but the denominator would simplify
– usr0192
Jul 16 at 18:18




maybe try the substitution $t=cos theta$ or $t=sintheta$? I haven't tried it but the denominator would simplify
– usr0192
Jul 16 at 18:18










5 Answers
5






active

oldest

votes

















up vote
16
down vote













Other way is substitution $t=sin^2theta$ so
$$intlimits_0^1 dfracdtsqrtt(1-t)=intlimits_0^fracpi2 2dt=pi$$






share|cite|improve this answer




























    up vote
    4
    down vote













    It's called an Abel Integral ( at least in my language ). You can write that
    $$
    frac1sqrtleft(x-aright)left(b-xright)=frac2a-bfrac1sqrt1-left(frac2a-bleft(x-fracb+a2right)right)^2$$



    that goes into arcsinus




    $$int_a^bfractextdxsqrtleft(x-aright)left(b-xright)=textarcsinleft(frac2b-afracb-a2right)+textarcsinleft(frac2a-bfraca-b2right)=2textarcsinleft(1right)=pi$$







    share|cite|improve this answer




























      up vote
      4
      down vote













      beginalign
      tan^2 theta &= fracx-ab-x \
      2tan theta sec^2 theta , dtheta &=
      fracb-a(b-x)^2 , dx \
      2sqrtfracx-ab-x times frac(x-a)+(b-x)b-x , dtheta &=
      fracb-a(b-x)^2 , dx \
      2, dtheta &= fracdxsqrt(x-a)(b-x) \
      int fracdxsqrt(x-a)(b-x) &=
      2tan^-1 sqrtfracx-ab-x
      endalign



      The singularity in Wolfram Alpha comes from the upper limit $b$.




      Geometrical interpretation



      Considering circular arc $(x,y)=(sqrtb-u,sqrtu-a)$



      beginalign
      ds &= fracsqrtb-a , du2sqrt(u-a)(b-u) \
      tan theta &= sqrtfracu-ab-u \
      beginpmatrix
      x \ y
      endpmatrix &=
      beginpmatrix
      sqrtb-a cos theta \
      sqrtb-a sin theta
      endpmatrix \
      ds &= sqrtb-a , dtheta
      endalign




      See also another integral here.






      share|cite|improve this answer






























        up vote
        2
        down vote













        I was taught to use the substitution $x=a sin^2 theta+b cos^2 theta$






        share|cite|improve this answer




























          up vote
          1
          down vote













          Let $m = fracb+a2$ and $r = fracb-a2$. Consider the circle



          $$ (x - m)^2 + y^2 = r^2. $$



          Part of this locus with $y geq 0$ is given by $y = sqrtr^2 - (x-m)^2 = sqrt(x-a)(b-x)$ for $a leq x leq b$. By the implicit differentiation, this function satisfies $ 2(x - m) dx + 2ydy = 0 $ and hence



          $$ fracdydx = -fracx-my. $$



          So the length of the upper-circular arc is



          $$ pi r = int_a^b sqrt1+left(fracdydxright)^2 , dx = int_a^b sqrtfrac(x-m)^2 + y^2y^2 , dx = int_a^b fracrsqrt(x-a)(b-x) , dx. $$



          Dividing both sides by $r$ gives the desired answer.






          share|cite|improve this answer





















            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );








             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2853673%2fproof-of-this-integration-shortcut-int-ab-fracdx-sqrtx-ab-x-pi%23new-answer', 'question_page');

            );

            Post as a guest






























            5 Answers
            5






            active

            oldest

            votes








            5 Answers
            5






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            16
            down vote













            Other way is substitution $t=sin^2theta$ so
            $$intlimits_0^1 dfracdtsqrtt(1-t)=intlimits_0^fracpi2 2dt=pi$$






            share|cite|improve this answer

























              up vote
              16
              down vote













              Other way is substitution $t=sin^2theta$ so
              $$intlimits_0^1 dfracdtsqrtt(1-t)=intlimits_0^fracpi2 2dt=pi$$






              share|cite|improve this answer























                up vote
                16
                down vote










                up vote
                16
                down vote









                Other way is substitution $t=sin^2theta$ so
                $$intlimits_0^1 dfracdtsqrtt(1-t)=intlimits_0^fracpi2 2dt=pi$$






                share|cite|improve this answer













                Other way is substitution $t=sin^2theta$ so
                $$intlimits_0^1 dfracdtsqrtt(1-t)=intlimits_0^fracpi2 2dt=pi$$







                share|cite|improve this answer













                share|cite|improve this answer



                share|cite|improve this answer











                answered Jul 16 at 18:19









                Nosrati

                19.8k41644




                19.8k41644




















                    up vote
                    4
                    down vote













                    It's called an Abel Integral ( at least in my language ). You can write that
                    $$
                    frac1sqrtleft(x-aright)left(b-xright)=frac2a-bfrac1sqrt1-left(frac2a-bleft(x-fracb+a2right)right)^2$$



                    that goes into arcsinus




                    $$int_a^bfractextdxsqrtleft(x-aright)left(b-xright)=textarcsinleft(frac2b-afracb-a2right)+textarcsinleft(frac2a-bfraca-b2right)=2textarcsinleft(1right)=pi$$







                    share|cite|improve this answer

























                      up vote
                      4
                      down vote













                      It's called an Abel Integral ( at least in my language ). You can write that
                      $$
                      frac1sqrtleft(x-aright)left(b-xright)=frac2a-bfrac1sqrt1-left(frac2a-bleft(x-fracb+a2right)right)^2$$



                      that goes into arcsinus




                      $$int_a^bfractextdxsqrtleft(x-aright)left(b-xright)=textarcsinleft(frac2b-afracb-a2right)+textarcsinleft(frac2a-bfraca-b2right)=2textarcsinleft(1right)=pi$$







                      share|cite|improve this answer























                        up vote
                        4
                        down vote










                        up vote
                        4
                        down vote









                        It's called an Abel Integral ( at least in my language ). You can write that
                        $$
                        frac1sqrtleft(x-aright)left(b-xright)=frac2a-bfrac1sqrt1-left(frac2a-bleft(x-fracb+a2right)right)^2$$



                        that goes into arcsinus




                        $$int_a^bfractextdxsqrtleft(x-aright)left(b-xright)=textarcsinleft(frac2b-afracb-a2right)+textarcsinleft(frac2a-bfraca-b2right)=2textarcsinleft(1right)=pi$$







                        share|cite|improve this answer













                        It's called an Abel Integral ( at least in my language ). You can write that
                        $$
                        frac1sqrtleft(x-aright)left(b-xright)=frac2a-bfrac1sqrt1-left(frac2a-bleft(x-fracb+a2right)right)^2$$



                        that goes into arcsinus




                        $$int_a^bfractextdxsqrtleft(x-aright)left(b-xright)=textarcsinleft(frac2b-afracb-a2right)+textarcsinleft(frac2a-bfraca-b2right)=2textarcsinleft(1right)=pi$$








                        share|cite|improve this answer













                        share|cite|improve this answer



                        share|cite|improve this answer











                        answered Jul 16 at 18:22









                        Atmos

                        4,660119




                        4,660119




















                            up vote
                            4
                            down vote













                            beginalign
                            tan^2 theta &= fracx-ab-x \
                            2tan theta sec^2 theta , dtheta &=
                            fracb-a(b-x)^2 , dx \
                            2sqrtfracx-ab-x times frac(x-a)+(b-x)b-x , dtheta &=
                            fracb-a(b-x)^2 , dx \
                            2, dtheta &= fracdxsqrt(x-a)(b-x) \
                            int fracdxsqrt(x-a)(b-x) &=
                            2tan^-1 sqrtfracx-ab-x
                            endalign



                            The singularity in Wolfram Alpha comes from the upper limit $b$.




                            Geometrical interpretation



                            Considering circular arc $(x,y)=(sqrtb-u,sqrtu-a)$



                            beginalign
                            ds &= fracsqrtb-a , du2sqrt(u-a)(b-u) \
                            tan theta &= sqrtfracu-ab-u \
                            beginpmatrix
                            x \ y
                            endpmatrix &=
                            beginpmatrix
                            sqrtb-a cos theta \
                            sqrtb-a sin theta
                            endpmatrix \
                            ds &= sqrtb-a , dtheta
                            endalign




                            See also another integral here.






                            share|cite|improve this answer



























                              up vote
                              4
                              down vote













                              beginalign
                              tan^2 theta &= fracx-ab-x \
                              2tan theta sec^2 theta , dtheta &=
                              fracb-a(b-x)^2 , dx \
                              2sqrtfracx-ab-x times frac(x-a)+(b-x)b-x , dtheta &=
                              fracb-a(b-x)^2 , dx \
                              2, dtheta &= fracdxsqrt(x-a)(b-x) \
                              int fracdxsqrt(x-a)(b-x) &=
                              2tan^-1 sqrtfracx-ab-x
                              endalign



                              The singularity in Wolfram Alpha comes from the upper limit $b$.




                              Geometrical interpretation



                              Considering circular arc $(x,y)=(sqrtb-u,sqrtu-a)$



                              beginalign
                              ds &= fracsqrtb-a , du2sqrt(u-a)(b-u) \
                              tan theta &= sqrtfracu-ab-u \
                              beginpmatrix
                              x \ y
                              endpmatrix &=
                              beginpmatrix
                              sqrtb-a cos theta \
                              sqrtb-a sin theta
                              endpmatrix \
                              ds &= sqrtb-a , dtheta
                              endalign




                              See also another integral here.






                              share|cite|improve this answer

























                                up vote
                                4
                                down vote










                                up vote
                                4
                                down vote









                                beginalign
                                tan^2 theta &= fracx-ab-x \
                                2tan theta sec^2 theta , dtheta &=
                                fracb-a(b-x)^2 , dx \
                                2sqrtfracx-ab-x times frac(x-a)+(b-x)b-x , dtheta &=
                                fracb-a(b-x)^2 , dx \
                                2, dtheta &= fracdxsqrt(x-a)(b-x) \
                                int fracdxsqrt(x-a)(b-x) &=
                                2tan^-1 sqrtfracx-ab-x
                                endalign



                                The singularity in Wolfram Alpha comes from the upper limit $b$.




                                Geometrical interpretation



                                Considering circular arc $(x,y)=(sqrtb-u,sqrtu-a)$



                                beginalign
                                ds &= fracsqrtb-a , du2sqrt(u-a)(b-u) \
                                tan theta &= sqrtfracu-ab-u \
                                beginpmatrix
                                x \ y
                                endpmatrix &=
                                beginpmatrix
                                sqrtb-a cos theta \
                                sqrtb-a sin theta
                                endpmatrix \
                                ds &= sqrtb-a , dtheta
                                endalign




                                See also another integral here.






                                share|cite|improve this answer















                                beginalign
                                tan^2 theta &= fracx-ab-x \
                                2tan theta sec^2 theta , dtheta &=
                                fracb-a(b-x)^2 , dx \
                                2sqrtfracx-ab-x times frac(x-a)+(b-x)b-x , dtheta &=
                                fracb-a(b-x)^2 , dx \
                                2, dtheta &= fracdxsqrt(x-a)(b-x) \
                                int fracdxsqrt(x-a)(b-x) &=
                                2tan^-1 sqrtfracx-ab-x
                                endalign



                                The singularity in Wolfram Alpha comes from the upper limit $b$.




                                Geometrical interpretation



                                Considering circular arc $(x,y)=(sqrtb-u,sqrtu-a)$



                                beginalign
                                ds &= fracsqrtb-a , du2sqrt(u-a)(b-u) \
                                tan theta &= sqrtfracu-ab-u \
                                beginpmatrix
                                x \ y
                                endpmatrix &=
                                beginpmatrix
                                sqrtb-a cos theta \
                                sqrtb-a sin theta
                                endpmatrix \
                                ds &= sqrtb-a , dtheta
                                endalign




                                See also another integral here.







                                share|cite|improve this answer















                                share|cite|improve this answer



                                share|cite|improve this answer








                                edited Jul 17 at 3:37


























                                answered Jul 16 at 18:19









                                Ng Chung Tak

                                13k31130




                                13k31130




















                                    up vote
                                    2
                                    down vote













                                    I was taught to use the substitution $x=a sin^2 theta+b cos^2 theta$






                                    share|cite|improve this answer

























                                      up vote
                                      2
                                      down vote













                                      I was taught to use the substitution $x=a sin^2 theta+b cos^2 theta$






                                      share|cite|improve this answer























                                        up vote
                                        2
                                        down vote










                                        up vote
                                        2
                                        down vote









                                        I was taught to use the substitution $x=a sin^2 theta+b cos^2 theta$






                                        share|cite|improve this answer













                                        I was taught to use the substitution $x=a sin^2 theta+b cos^2 theta$







                                        share|cite|improve this answer













                                        share|cite|improve this answer



                                        share|cite|improve this answer











                                        answered Jul 17 at 6:41









                                        Hari Shankar

                                        2,121139




                                        2,121139




















                                            up vote
                                            1
                                            down vote













                                            Let $m = fracb+a2$ and $r = fracb-a2$. Consider the circle



                                            $$ (x - m)^2 + y^2 = r^2. $$



                                            Part of this locus with $y geq 0$ is given by $y = sqrtr^2 - (x-m)^2 = sqrt(x-a)(b-x)$ for $a leq x leq b$. By the implicit differentiation, this function satisfies $ 2(x - m) dx + 2ydy = 0 $ and hence



                                            $$ fracdydx = -fracx-my. $$



                                            So the length of the upper-circular arc is



                                            $$ pi r = int_a^b sqrt1+left(fracdydxright)^2 , dx = int_a^b sqrtfrac(x-m)^2 + y^2y^2 , dx = int_a^b fracrsqrt(x-a)(b-x) , dx. $$



                                            Dividing both sides by $r$ gives the desired answer.






                                            share|cite|improve this answer

























                                              up vote
                                              1
                                              down vote













                                              Let $m = fracb+a2$ and $r = fracb-a2$. Consider the circle



                                              $$ (x - m)^2 + y^2 = r^2. $$



                                              Part of this locus with $y geq 0$ is given by $y = sqrtr^2 - (x-m)^2 = sqrt(x-a)(b-x)$ for $a leq x leq b$. By the implicit differentiation, this function satisfies $ 2(x - m) dx + 2ydy = 0 $ and hence



                                              $$ fracdydx = -fracx-my. $$



                                              So the length of the upper-circular arc is



                                              $$ pi r = int_a^b sqrt1+left(fracdydxright)^2 , dx = int_a^b sqrtfrac(x-m)^2 + y^2y^2 , dx = int_a^b fracrsqrt(x-a)(b-x) , dx. $$



                                              Dividing both sides by $r$ gives the desired answer.






                                              share|cite|improve this answer























                                                up vote
                                                1
                                                down vote










                                                up vote
                                                1
                                                down vote









                                                Let $m = fracb+a2$ and $r = fracb-a2$. Consider the circle



                                                $$ (x - m)^2 + y^2 = r^2. $$



                                                Part of this locus with $y geq 0$ is given by $y = sqrtr^2 - (x-m)^2 = sqrt(x-a)(b-x)$ for $a leq x leq b$. By the implicit differentiation, this function satisfies $ 2(x - m) dx + 2ydy = 0 $ and hence



                                                $$ fracdydx = -fracx-my. $$



                                                So the length of the upper-circular arc is



                                                $$ pi r = int_a^b sqrt1+left(fracdydxright)^2 , dx = int_a^b sqrtfrac(x-m)^2 + y^2y^2 , dx = int_a^b fracrsqrt(x-a)(b-x) , dx. $$



                                                Dividing both sides by $r$ gives the desired answer.






                                                share|cite|improve this answer













                                                Let $m = fracb+a2$ and $r = fracb-a2$. Consider the circle



                                                $$ (x - m)^2 + y^2 = r^2. $$



                                                Part of this locus with $y geq 0$ is given by $y = sqrtr^2 - (x-m)^2 = sqrt(x-a)(b-x)$ for $a leq x leq b$. By the implicit differentiation, this function satisfies $ 2(x - m) dx + 2ydy = 0 $ and hence



                                                $$ fracdydx = -fracx-my. $$



                                                So the length of the upper-circular arc is



                                                $$ pi r = int_a^b sqrt1+left(fracdydxright)^2 , dx = int_a^b sqrtfrac(x-m)^2 + y^2y^2 , dx = int_a^b fracrsqrt(x-a)(b-x) , dx. $$



                                                Dividing both sides by $r$ gives the desired answer.







                                                share|cite|improve this answer













                                                share|cite|improve this answer



                                                share|cite|improve this answer











                                                answered Jul 17 at 7:01









                                                Sangchul Lee

                                                85.6k12155253




                                                85.6k12155253






















                                                     

                                                    draft saved


                                                    draft discarded


























                                                     


                                                    draft saved


                                                    draft discarded














                                                    StackExchange.ready(
                                                    function ()
                                                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2853673%2fproof-of-this-integration-shortcut-int-ab-fracdx-sqrtx-ab-x-pi%23new-answer', 'question_page');

                                                    );

                                                    Post as a guest













































































                                                    Comments

                                                    Popular posts from this blog

                                                    What is the equation of a 3D cone with generalised tilt?

                                                    Relationship between determinant of matrix and determinant of adjoint?

                                                    Color the edges and diagonals of a regular polygon