Evaluate $int_tan z dz$
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Evaluate $int_=4tan z,mathrm dz$
$tan z=fracsin zcos z$ there is a a simple pole at $z=fracpi2$
$operatornameRes(f,fracpi2)=lim_zto fracpi2(z-fracpi2)(fracsin zcos z)$
$operatornameRes(f,frac3pi2)=lim_zto frac3pi2(z-frac3pi2)(fracsin zcos z)$
How to continue ?
complex-analysis contour-integration residue-calculus
add a comment |Â
up vote
0
down vote
favorite
Evaluate $int_=4tan z,mathrm dz$
$tan z=fracsin zcos z$ there is a a simple pole at $z=fracpi2$
$operatornameRes(f,fracpi2)=lim_zto fracpi2(z-fracpi2)(fracsin zcos z)$
$operatornameRes(f,frac3pi2)=lim_zto frac3pi2(z-frac3pi2)(fracsin zcos z)$
How to continue ?
complex-analysis contour-integration residue-calculus
1
Usetan z
intead of $tgz$.
â amWhy
Jul 16 at 15:39
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Evaluate $int_=4tan z,mathrm dz$
$tan z=fracsin zcos z$ there is a a simple pole at $z=fracpi2$
$operatornameRes(f,fracpi2)=lim_zto fracpi2(z-fracpi2)(fracsin zcos z)$
$operatornameRes(f,frac3pi2)=lim_zto frac3pi2(z-frac3pi2)(fracsin zcos z)$
How to continue ?
complex-analysis contour-integration residue-calculus
Evaluate $int_=4tan z,mathrm dz$
$tan z=fracsin zcos z$ there is a a simple pole at $z=fracpi2$
$operatornameRes(f,fracpi2)=lim_zto fracpi2(z-fracpi2)(fracsin zcos z)$
$operatornameRes(f,frac3pi2)=lim_zto frac3pi2(z-frac3pi2)(fracsin zcos z)$
How to continue ?
complex-analysis contour-integration residue-calculus
edited Jul 16 at 15:48
José Carlos Santos
114k1698177
114k1698177
asked Jul 16 at 15:35
newhere
759310
759310
1
Usetan z
intead of $tgz$.
â amWhy
Jul 16 at 15:39
add a comment |Â
1
Usetan z
intead of $tgz$.
â amWhy
Jul 16 at 15:39
1
1
Use
tan z
intead of $tgz$.â amWhy
Jul 16 at 15:39
Use
tan z
intead of $tgz$.â amWhy
Jul 16 at 15:39
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
5
down vote
accepted
You havebeginalignoperatornameResleft(tan z,pmfracpi2right)&=lim_ztopmfracpi2left(zmpfracpi2right)fracsin zcos z\&=lim_ztopmfracpi2fracsin zfraccos(z)-cosleft(pmfracpi2right)zmpfracpi2\&=fracsinleft(pmfracpi2right)cos'left(pmfracpi2right)\&=-1.endalignBesides, $pmfracpi2$ are the only poles in the disc centered at $0$ with radius $4$. Thereforebeginalignint_=4tan z,mathrm dz&=2pi ileft(operatornameResleft(tan z,fracpi2right)+operatornameResleft(tan z,-fracpi2right)right)\&=-4pi i.endalign
add a comment |Â
up vote
2
down vote
Taylor expand $cos(z)=cos(fracpi2)+(z-fracpi 2)cos'(fracpi 2) + frac12(z-fracpi 2)^2 cos''(fracpi 2) + dots$ and $cos(z)=cos(frac3pi2)+(z-frac3pi 2)cos'(frac3pi 2) + frac12(z-frac3pi 2)^2 cos''(frac3pi 2) + dots$, use that to compute the limits, then use the residue theorem.
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
5
down vote
accepted
You havebeginalignoperatornameResleft(tan z,pmfracpi2right)&=lim_ztopmfracpi2left(zmpfracpi2right)fracsin zcos z\&=lim_ztopmfracpi2fracsin zfraccos(z)-cosleft(pmfracpi2right)zmpfracpi2\&=fracsinleft(pmfracpi2right)cos'left(pmfracpi2right)\&=-1.endalignBesides, $pmfracpi2$ are the only poles in the disc centered at $0$ with radius $4$. Thereforebeginalignint_=4tan z,mathrm dz&=2pi ileft(operatornameResleft(tan z,fracpi2right)+operatornameResleft(tan z,-fracpi2right)right)\&=-4pi i.endalign
add a comment |Â
up vote
5
down vote
accepted
You havebeginalignoperatornameResleft(tan z,pmfracpi2right)&=lim_ztopmfracpi2left(zmpfracpi2right)fracsin zcos z\&=lim_ztopmfracpi2fracsin zfraccos(z)-cosleft(pmfracpi2right)zmpfracpi2\&=fracsinleft(pmfracpi2right)cos'left(pmfracpi2right)\&=-1.endalignBesides, $pmfracpi2$ are the only poles in the disc centered at $0$ with radius $4$. Thereforebeginalignint_=4tan z,mathrm dz&=2pi ileft(operatornameResleft(tan z,fracpi2right)+operatornameResleft(tan z,-fracpi2right)right)\&=-4pi i.endalign
add a comment |Â
up vote
5
down vote
accepted
up vote
5
down vote
accepted
You havebeginalignoperatornameResleft(tan z,pmfracpi2right)&=lim_ztopmfracpi2left(zmpfracpi2right)fracsin zcos z\&=lim_ztopmfracpi2fracsin zfraccos(z)-cosleft(pmfracpi2right)zmpfracpi2\&=fracsinleft(pmfracpi2right)cos'left(pmfracpi2right)\&=-1.endalignBesides, $pmfracpi2$ are the only poles in the disc centered at $0$ with radius $4$. Thereforebeginalignint_=4tan z,mathrm dz&=2pi ileft(operatornameResleft(tan z,fracpi2right)+operatornameResleft(tan z,-fracpi2right)right)\&=-4pi i.endalign
You havebeginalignoperatornameResleft(tan z,pmfracpi2right)&=lim_ztopmfracpi2left(zmpfracpi2right)fracsin zcos z\&=lim_ztopmfracpi2fracsin zfraccos(z)-cosleft(pmfracpi2right)zmpfracpi2\&=fracsinleft(pmfracpi2right)cos'left(pmfracpi2right)\&=-1.endalignBesides, $pmfracpi2$ are the only poles in the disc centered at $0$ with radius $4$. Thereforebeginalignint_=4tan z,mathrm dz&=2pi ileft(operatornameResleft(tan z,fracpi2right)+operatornameResleft(tan z,-fracpi2right)right)\&=-4pi i.endalign
edited Jul 16 at 16:06
Chris Custer
5,4582622
5,4582622
answered Jul 16 at 15:46
José Carlos Santos
114k1698177
114k1698177
add a comment |Â
add a comment |Â
up vote
2
down vote
Taylor expand $cos(z)=cos(fracpi2)+(z-fracpi 2)cos'(fracpi 2) + frac12(z-fracpi 2)^2 cos''(fracpi 2) + dots$ and $cos(z)=cos(frac3pi2)+(z-frac3pi 2)cos'(frac3pi 2) + frac12(z-frac3pi 2)^2 cos''(frac3pi 2) + dots$, use that to compute the limits, then use the residue theorem.
add a comment |Â
up vote
2
down vote
Taylor expand $cos(z)=cos(fracpi2)+(z-fracpi 2)cos'(fracpi 2) + frac12(z-fracpi 2)^2 cos''(fracpi 2) + dots$ and $cos(z)=cos(frac3pi2)+(z-frac3pi 2)cos'(frac3pi 2) + frac12(z-frac3pi 2)^2 cos''(frac3pi 2) + dots$, use that to compute the limits, then use the residue theorem.
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Taylor expand $cos(z)=cos(fracpi2)+(z-fracpi 2)cos'(fracpi 2) + frac12(z-fracpi 2)^2 cos''(fracpi 2) + dots$ and $cos(z)=cos(frac3pi2)+(z-frac3pi 2)cos'(frac3pi 2) + frac12(z-frac3pi 2)^2 cos''(frac3pi 2) + dots$, use that to compute the limits, then use the residue theorem.
Taylor expand $cos(z)=cos(fracpi2)+(z-fracpi 2)cos'(fracpi 2) + frac12(z-fracpi 2)^2 cos''(fracpi 2) + dots$ and $cos(z)=cos(frac3pi2)+(z-frac3pi 2)cos'(frac3pi 2) + frac12(z-frac3pi 2)^2 cos''(frac3pi 2) + dots$, use that to compute the limits, then use the residue theorem.
answered Jul 16 at 15:41
Kusma
1,127112
1,127112
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2853513%2fevaluate-int-z-4-tan-z-dz%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
1
Use
tan z
intead of $tgz$.â amWhy
Jul 16 at 15:39