Evaluate $int_tan z dz$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Evaluate $int_=4tan z,mathrm dz$



$tan z=fracsin zcos z$ there is a a simple pole at $z=fracpi2$



$operatornameRes(f,fracpi2)=lim_zto fracpi2(z-fracpi2)(fracsin zcos z)$



$operatornameRes(f,frac3pi2)=lim_zto frac3pi2(z-frac3pi2)(fracsin zcos z)$



How to continue ?







share|cite|improve this question

















  • 1




    Use tan z intead of $tgz$.
    – amWhy
    Jul 16 at 15:39














up vote
0
down vote

favorite












Evaluate $int_=4tan z,mathrm dz$



$tan z=fracsin zcos z$ there is a a simple pole at $z=fracpi2$



$operatornameRes(f,fracpi2)=lim_zto fracpi2(z-fracpi2)(fracsin zcos z)$



$operatornameRes(f,frac3pi2)=lim_zto frac3pi2(z-frac3pi2)(fracsin zcos z)$



How to continue ?







share|cite|improve this question

















  • 1




    Use tan z intead of $tgz$.
    – amWhy
    Jul 16 at 15:39












up vote
0
down vote

favorite









up vote
0
down vote

favorite











Evaluate $int_=4tan z,mathrm dz$



$tan z=fracsin zcos z$ there is a a simple pole at $z=fracpi2$



$operatornameRes(f,fracpi2)=lim_zto fracpi2(z-fracpi2)(fracsin zcos z)$



$operatornameRes(f,frac3pi2)=lim_zto frac3pi2(z-frac3pi2)(fracsin zcos z)$



How to continue ?







share|cite|improve this question













Evaluate $int_=4tan z,mathrm dz$



$tan z=fracsin zcos z$ there is a a simple pole at $z=fracpi2$



$operatornameRes(f,fracpi2)=lim_zto fracpi2(z-fracpi2)(fracsin zcos z)$



$operatornameRes(f,frac3pi2)=lim_zto frac3pi2(z-frac3pi2)(fracsin zcos z)$



How to continue ?









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 16 at 15:48









José Carlos Santos

114k1698177




114k1698177









asked Jul 16 at 15:35









newhere

759310




759310







  • 1




    Use tan z intead of $tgz$.
    – amWhy
    Jul 16 at 15:39












  • 1




    Use tan z intead of $tgz$.
    – amWhy
    Jul 16 at 15:39







1




1




Use tan z intead of $tgz$.
– amWhy
Jul 16 at 15:39




Use tan z intead of $tgz$.
– amWhy
Jul 16 at 15:39










2 Answers
2






active

oldest

votes

















up vote
5
down vote



accepted










You havebeginalignoperatornameResleft(tan z,pmfracpi2right)&=lim_ztopmfracpi2left(zmpfracpi2right)fracsin zcos z\&=lim_ztopmfracpi2fracsin zfraccos(z)-cosleft(pmfracpi2right)zmpfracpi2\&=fracsinleft(pmfracpi2right)cos'left(pmfracpi2right)\&=-1.endalignBesides, $pmfracpi2$ are the only poles in the disc centered at $0$ with radius $4$. Thereforebeginalignint_=4tan z,mathrm dz&=2pi ileft(operatornameResleft(tan z,fracpi2right)+operatornameResleft(tan z,-fracpi2right)right)\&=-4pi i.endalign






share|cite|improve this answer






























    up vote
    2
    down vote













    Taylor expand $cos(z)=cos(fracpi2)+(z-fracpi 2)cos'(fracpi 2) + frac12(z-fracpi 2)^2 cos''(fracpi 2) + dots$ and $cos(z)=cos(frac3pi2)+(z-frac3pi 2)cos'(frac3pi 2) + frac12(z-frac3pi 2)^2 cos''(frac3pi 2) + dots$, use that to compute the limits, then use the residue theorem.






    share|cite|improve this answer





















      Your Answer




      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: false,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );








       

      draft saved


      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2853513%2fevaluate-int-z-4-tan-z-dz%23new-answer', 'question_page');

      );

      Post as a guest






























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      5
      down vote



      accepted










      You havebeginalignoperatornameResleft(tan z,pmfracpi2right)&=lim_ztopmfracpi2left(zmpfracpi2right)fracsin zcos z\&=lim_ztopmfracpi2fracsin zfraccos(z)-cosleft(pmfracpi2right)zmpfracpi2\&=fracsinleft(pmfracpi2right)cos'left(pmfracpi2right)\&=-1.endalignBesides, $pmfracpi2$ are the only poles in the disc centered at $0$ with radius $4$. Thereforebeginalignint_=4tan z,mathrm dz&=2pi ileft(operatornameResleft(tan z,fracpi2right)+operatornameResleft(tan z,-fracpi2right)right)\&=-4pi i.endalign






      share|cite|improve this answer



























        up vote
        5
        down vote



        accepted










        You havebeginalignoperatornameResleft(tan z,pmfracpi2right)&=lim_ztopmfracpi2left(zmpfracpi2right)fracsin zcos z\&=lim_ztopmfracpi2fracsin zfraccos(z)-cosleft(pmfracpi2right)zmpfracpi2\&=fracsinleft(pmfracpi2right)cos'left(pmfracpi2right)\&=-1.endalignBesides, $pmfracpi2$ are the only poles in the disc centered at $0$ with radius $4$. Thereforebeginalignint_=4tan z,mathrm dz&=2pi ileft(operatornameResleft(tan z,fracpi2right)+operatornameResleft(tan z,-fracpi2right)right)\&=-4pi i.endalign






        share|cite|improve this answer

























          up vote
          5
          down vote



          accepted







          up vote
          5
          down vote



          accepted






          You havebeginalignoperatornameResleft(tan z,pmfracpi2right)&=lim_ztopmfracpi2left(zmpfracpi2right)fracsin zcos z\&=lim_ztopmfracpi2fracsin zfraccos(z)-cosleft(pmfracpi2right)zmpfracpi2\&=fracsinleft(pmfracpi2right)cos'left(pmfracpi2right)\&=-1.endalignBesides, $pmfracpi2$ are the only poles in the disc centered at $0$ with radius $4$. Thereforebeginalignint_=4tan z,mathrm dz&=2pi ileft(operatornameResleft(tan z,fracpi2right)+operatornameResleft(tan z,-fracpi2right)right)\&=-4pi i.endalign






          share|cite|improve this answer















          You havebeginalignoperatornameResleft(tan z,pmfracpi2right)&=lim_ztopmfracpi2left(zmpfracpi2right)fracsin zcos z\&=lim_ztopmfracpi2fracsin zfraccos(z)-cosleft(pmfracpi2right)zmpfracpi2\&=fracsinleft(pmfracpi2right)cos'left(pmfracpi2right)\&=-1.endalignBesides, $pmfracpi2$ are the only poles in the disc centered at $0$ with radius $4$. Thereforebeginalignint_=4tan z,mathrm dz&=2pi ileft(operatornameResleft(tan z,fracpi2right)+operatornameResleft(tan z,-fracpi2right)right)\&=-4pi i.endalign







          share|cite|improve this answer















          share|cite|improve this answer



          share|cite|improve this answer








          edited Jul 16 at 16:06









          Chris Custer

          5,4582622




          5,4582622











          answered Jul 16 at 15:46









          José Carlos Santos

          114k1698177




          114k1698177




















              up vote
              2
              down vote













              Taylor expand $cos(z)=cos(fracpi2)+(z-fracpi 2)cos'(fracpi 2) + frac12(z-fracpi 2)^2 cos''(fracpi 2) + dots$ and $cos(z)=cos(frac3pi2)+(z-frac3pi 2)cos'(frac3pi 2) + frac12(z-frac3pi 2)^2 cos''(frac3pi 2) + dots$, use that to compute the limits, then use the residue theorem.






              share|cite|improve this answer

























                up vote
                2
                down vote













                Taylor expand $cos(z)=cos(fracpi2)+(z-fracpi 2)cos'(fracpi 2) + frac12(z-fracpi 2)^2 cos''(fracpi 2) + dots$ and $cos(z)=cos(frac3pi2)+(z-frac3pi 2)cos'(frac3pi 2) + frac12(z-frac3pi 2)^2 cos''(frac3pi 2) + dots$, use that to compute the limits, then use the residue theorem.






                share|cite|improve this answer























                  up vote
                  2
                  down vote










                  up vote
                  2
                  down vote









                  Taylor expand $cos(z)=cos(fracpi2)+(z-fracpi 2)cos'(fracpi 2) + frac12(z-fracpi 2)^2 cos''(fracpi 2) + dots$ and $cos(z)=cos(frac3pi2)+(z-frac3pi 2)cos'(frac3pi 2) + frac12(z-frac3pi 2)^2 cos''(frac3pi 2) + dots$, use that to compute the limits, then use the residue theorem.






                  share|cite|improve this answer













                  Taylor expand $cos(z)=cos(fracpi2)+(z-fracpi 2)cos'(fracpi 2) + frac12(z-fracpi 2)^2 cos''(fracpi 2) + dots$ and $cos(z)=cos(frac3pi2)+(z-frac3pi 2)cos'(frac3pi 2) + frac12(z-frac3pi 2)^2 cos''(frac3pi 2) + dots$, use that to compute the limits, then use the residue theorem.







                  share|cite|improve this answer













                  share|cite|improve this answer



                  share|cite|improve this answer











                  answered Jul 16 at 15:41









                  Kusma

                  1,127112




                  1,127112






















                       

                      draft saved


                      draft discarded


























                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2853513%2fevaluate-int-z-4-tan-z-dz%23new-answer', 'question_page');

                      );

                      Post as a guest













































































                      Comments

                      Popular posts from this blog

                      What is the equation of a 3D cone with generalised tilt?

                      Color the edges and diagonals of a regular polygon

                      Relationship between determinant of matrix and determinant of adjoint?