Find Singularity Type $fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)$
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Let $f(z),g(z)$ have pole of order $1$ at $z_0$, $h(z)$ pole of order $2$ and $r(z)$ removable singularity at $z_0$
What is singularity of $$fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)$$
So I set $f(z)=fraca(z)z-z_0,g(z)=fracb(z)z-z_0,h(z)=fracc(z)(z-z_0)^2$ can ignore $r(z)$?
$$fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)=fracfraca^2(z)(z-z_0)^2+fracb(z)z-z_0fracc(z)(z-z_0)^2+r(z)=fraca^2(z)+b(z)(z-z_0)(z-z_0)^2*frac(z-z_0)^2c(z)+r(z)(z-z_0)^2=fraca^2(z)+b(z)(z-z_0)c(z)+r(z)(z-z_0)^2$$
Plug in $z=z_0$ we get:
$$fraca^2(z_0)+b(z)*0c(z_0)+0$$
But $c(z_0)$ is analytic
complex-analysis
add a comment |Â
up vote
0
down vote
favorite
Let $f(z),g(z)$ have pole of order $1$ at $z_0$, $h(z)$ pole of order $2$ and $r(z)$ removable singularity at $z_0$
What is singularity of $$fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)$$
So I set $f(z)=fraca(z)z-z_0,g(z)=fracb(z)z-z_0,h(z)=fracc(z)(z-z_0)^2$ can ignore $r(z)$?
$$fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)=fracfraca^2(z)(z-z_0)^2+fracb(z)z-z_0fracc(z)(z-z_0)^2+r(z)=fraca^2(z)+b(z)(z-z_0)(z-z_0)^2*frac(z-z_0)^2c(z)+r(z)(z-z_0)^2=fraca^2(z)+b(z)(z-z_0)c(z)+r(z)(z-z_0)^2$$
Plug in $z=z_0$ we get:
$$fraca^2(z_0)+b(z)*0c(z_0)+0$$
But $c(z_0)$ is analytic
complex-analysis
"What is singularity of $$fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)$$" That doesn't make sense.
â zhw.
Jul 16 at 20:11
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $f(z),g(z)$ have pole of order $1$ at $z_0$, $h(z)$ pole of order $2$ and $r(z)$ removable singularity at $z_0$
What is singularity of $$fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)$$
So I set $f(z)=fraca(z)z-z_0,g(z)=fracb(z)z-z_0,h(z)=fracc(z)(z-z_0)^2$ can ignore $r(z)$?
$$fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)=fracfraca^2(z)(z-z_0)^2+fracb(z)z-z_0fracc(z)(z-z_0)^2+r(z)=fraca^2(z)+b(z)(z-z_0)(z-z_0)^2*frac(z-z_0)^2c(z)+r(z)(z-z_0)^2=fraca^2(z)+b(z)(z-z_0)c(z)+r(z)(z-z_0)^2$$
Plug in $z=z_0$ we get:
$$fraca^2(z_0)+b(z)*0c(z_0)+0$$
But $c(z_0)$ is analytic
complex-analysis
Let $f(z),g(z)$ have pole of order $1$ at $z_0$, $h(z)$ pole of order $2$ and $r(z)$ removable singularity at $z_0$
What is singularity of $$fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)$$
So I set $f(z)=fraca(z)z-z_0,g(z)=fracb(z)z-z_0,h(z)=fracc(z)(z-z_0)^2$ can ignore $r(z)$?
$$fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)=fracfraca^2(z)(z-z_0)^2+fracb(z)z-z_0fracc(z)(z-z_0)^2+r(z)=fraca^2(z)+b(z)(z-z_0)(z-z_0)^2*frac(z-z_0)^2c(z)+r(z)(z-z_0)^2=fraca^2(z)+b(z)(z-z_0)c(z)+r(z)(z-z_0)^2$$
Plug in $z=z_0$ we get:
$$fraca^2(z_0)+b(z)*0c(z_0)+0$$
But $c(z_0)$ is analytic
complex-analysis
edited Jul 16 at 16:15
asked Jul 16 at 15:58
newhere
759310
759310
"What is singularity of $$fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)$$" That doesn't make sense.
â zhw.
Jul 16 at 20:11
add a comment |Â
"What is singularity of $$fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)$$" That doesn't make sense.
â zhw.
Jul 16 at 20:11
"What is singularity of $$fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)$$" That doesn't make sense.
â zhw.
Jul 16 at 20:11
"What is singularity of $$fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)$$" That doesn't make sense.
â zhw.
Jul 16 at 20:11
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
Your approach is fine. Note thatbeginalignlim_zto z_0fracf^2(z)+g(z)h(z)+r(z)&=lim_zto z_0fracfraca^2(z)(z-z_0)^2+fracb(z)z-z_0fracc(z)(z-z_0)^2+r(z)\&=lim_zto z_0fraca^2(z)+(z-z_0)b(z)c(z)+(z-z_0)^2c(z)\&=fraca^2(z_0)c(z_0)inmathbbCendalignand that therefore your function has a removable singularity at $z_0$ if $z_0$ is not a zero of $c$ and a pole otherwise (whose order is the order of $z_0$ as a zero of $c$).
Why removable singularity? as $c(z_0)$ is analytic
â newhere
Jul 16 at 16:13
@newhere Right. I've edited my answer.
â José Carlos Santos
Jul 16 at 16:17
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Your approach is fine. Note thatbeginalignlim_zto z_0fracf^2(z)+g(z)h(z)+r(z)&=lim_zto z_0fracfraca^2(z)(z-z_0)^2+fracb(z)z-z_0fracc(z)(z-z_0)^2+r(z)\&=lim_zto z_0fraca^2(z)+(z-z_0)b(z)c(z)+(z-z_0)^2c(z)\&=fraca^2(z_0)c(z_0)inmathbbCendalignand that therefore your function has a removable singularity at $z_0$ if $z_0$ is not a zero of $c$ and a pole otherwise (whose order is the order of $z_0$ as a zero of $c$).
Why removable singularity? as $c(z_0)$ is analytic
â newhere
Jul 16 at 16:13
@newhere Right. I've edited my answer.
â José Carlos Santos
Jul 16 at 16:17
add a comment |Â
up vote
1
down vote
accepted
Your approach is fine. Note thatbeginalignlim_zto z_0fracf^2(z)+g(z)h(z)+r(z)&=lim_zto z_0fracfraca^2(z)(z-z_0)^2+fracb(z)z-z_0fracc(z)(z-z_0)^2+r(z)\&=lim_zto z_0fraca^2(z)+(z-z_0)b(z)c(z)+(z-z_0)^2c(z)\&=fraca^2(z_0)c(z_0)inmathbbCendalignand that therefore your function has a removable singularity at $z_0$ if $z_0$ is not a zero of $c$ and a pole otherwise (whose order is the order of $z_0$ as a zero of $c$).
Why removable singularity? as $c(z_0)$ is analytic
â newhere
Jul 16 at 16:13
@newhere Right. I've edited my answer.
â José Carlos Santos
Jul 16 at 16:17
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Your approach is fine. Note thatbeginalignlim_zto z_0fracf^2(z)+g(z)h(z)+r(z)&=lim_zto z_0fracfraca^2(z)(z-z_0)^2+fracb(z)z-z_0fracc(z)(z-z_0)^2+r(z)\&=lim_zto z_0fraca^2(z)+(z-z_0)b(z)c(z)+(z-z_0)^2c(z)\&=fraca^2(z_0)c(z_0)inmathbbCendalignand that therefore your function has a removable singularity at $z_0$ if $z_0$ is not a zero of $c$ and a pole otherwise (whose order is the order of $z_0$ as a zero of $c$).
Your approach is fine. Note thatbeginalignlim_zto z_0fracf^2(z)+g(z)h(z)+r(z)&=lim_zto z_0fracfraca^2(z)(z-z_0)^2+fracb(z)z-z_0fracc(z)(z-z_0)^2+r(z)\&=lim_zto z_0fraca^2(z)+(z-z_0)b(z)c(z)+(z-z_0)^2c(z)\&=fraca^2(z_0)c(z_0)inmathbbCendalignand that therefore your function has a removable singularity at $z_0$ if $z_0$ is not a zero of $c$ and a pole otherwise (whose order is the order of $z_0$ as a zero of $c$).
edited Jul 16 at 16:17
answered Jul 16 at 16:12
José Carlos Santos
114k1698177
114k1698177
Why removable singularity? as $c(z_0)$ is analytic
â newhere
Jul 16 at 16:13
@newhere Right. I've edited my answer.
â José Carlos Santos
Jul 16 at 16:17
add a comment |Â
Why removable singularity? as $c(z_0)$ is analytic
â newhere
Jul 16 at 16:13
@newhere Right. I've edited my answer.
â José Carlos Santos
Jul 16 at 16:17
Why removable singularity? as $c(z_0)$ is analytic
â newhere
Jul 16 at 16:13
Why removable singularity? as $c(z_0)$ is analytic
â newhere
Jul 16 at 16:13
@newhere Right. I've edited my answer.
â José Carlos Santos
Jul 16 at 16:17
@newhere Right. I've edited my answer.
â José Carlos Santos
Jul 16 at 16:17
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2853539%2ffind-singularity-type-fracfz-02gz-0hz-0rz-0%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
"What is singularity of $$fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)$$" That doesn't make sense.
â zhw.
Jul 16 at 20:11