Find Singularity Type $fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Let $f(z),g(z)$ have pole of order $1$ at $z_0$, $h(z)$ pole of order $2$ and $r(z)$ removable singularity at $z_0$



What is singularity of $$fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)$$



So I set $f(z)=fraca(z)z-z_0,g(z)=fracb(z)z-z_0,h(z)=fracc(z)(z-z_0)^2$ can ignore $r(z)$?



$$fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)=fracfraca^2(z)(z-z_0)^2+fracb(z)z-z_0fracc(z)(z-z_0)^2+r(z)=fraca^2(z)+b(z)(z-z_0)(z-z_0)^2*frac(z-z_0)^2c(z)+r(z)(z-z_0)^2=fraca^2(z)+b(z)(z-z_0)c(z)+r(z)(z-z_0)^2$$



Plug in $z=z_0$ we get:



$$fraca^2(z_0)+b(z)*0c(z_0)+0$$



But $c(z_0)$ is analytic







share|cite|improve this question





















  • "What is singularity of $$fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)$$" That doesn't make sense.
    – zhw.
    Jul 16 at 20:11














up vote
0
down vote

favorite












Let $f(z),g(z)$ have pole of order $1$ at $z_0$, $h(z)$ pole of order $2$ and $r(z)$ removable singularity at $z_0$



What is singularity of $$fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)$$



So I set $f(z)=fraca(z)z-z_0,g(z)=fracb(z)z-z_0,h(z)=fracc(z)(z-z_0)^2$ can ignore $r(z)$?



$$fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)=fracfraca^2(z)(z-z_0)^2+fracb(z)z-z_0fracc(z)(z-z_0)^2+r(z)=fraca^2(z)+b(z)(z-z_0)(z-z_0)^2*frac(z-z_0)^2c(z)+r(z)(z-z_0)^2=fraca^2(z)+b(z)(z-z_0)c(z)+r(z)(z-z_0)^2$$



Plug in $z=z_0$ we get:



$$fraca^2(z_0)+b(z)*0c(z_0)+0$$



But $c(z_0)$ is analytic







share|cite|improve this question





















  • "What is singularity of $$fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)$$" That doesn't make sense.
    – zhw.
    Jul 16 at 20:11












up vote
0
down vote

favorite









up vote
0
down vote

favorite











Let $f(z),g(z)$ have pole of order $1$ at $z_0$, $h(z)$ pole of order $2$ and $r(z)$ removable singularity at $z_0$



What is singularity of $$fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)$$



So I set $f(z)=fraca(z)z-z_0,g(z)=fracb(z)z-z_0,h(z)=fracc(z)(z-z_0)^2$ can ignore $r(z)$?



$$fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)=fracfraca^2(z)(z-z_0)^2+fracb(z)z-z_0fracc(z)(z-z_0)^2+r(z)=fraca^2(z)+b(z)(z-z_0)(z-z_0)^2*frac(z-z_0)^2c(z)+r(z)(z-z_0)^2=fraca^2(z)+b(z)(z-z_0)c(z)+r(z)(z-z_0)^2$$



Plug in $z=z_0$ we get:



$$fraca^2(z_0)+b(z)*0c(z_0)+0$$



But $c(z_0)$ is analytic







share|cite|improve this question













Let $f(z),g(z)$ have pole of order $1$ at $z_0$, $h(z)$ pole of order $2$ and $r(z)$ removable singularity at $z_0$



What is singularity of $$fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)$$



So I set $f(z)=fraca(z)z-z_0,g(z)=fracb(z)z-z_0,h(z)=fracc(z)(z-z_0)^2$ can ignore $r(z)$?



$$fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)=fracfraca^2(z)(z-z_0)^2+fracb(z)z-z_0fracc(z)(z-z_0)^2+r(z)=fraca^2(z)+b(z)(z-z_0)(z-z_0)^2*frac(z-z_0)^2c(z)+r(z)(z-z_0)^2=fraca^2(z)+b(z)(z-z_0)c(z)+r(z)(z-z_0)^2$$



Plug in $z=z_0$ we get:



$$fraca^2(z_0)+b(z)*0c(z_0)+0$$



But $c(z_0)$ is analytic









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 16 at 16:15
























asked Jul 16 at 15:58









newhere

759310




759310











  • "What is singularity of $$fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)$$" That doesn't make sense.
    – zhw.
    Jul 16 at 20:11
















  • "What is singularity of $$fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)$$" That doesn't make sense.
    – zhw.
    Jul 16 at 20:11















"What is singularity of $$fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)$$" That doesn't make sense.
– zhw.
Jul 16 at 20:11




"What is singularity of $$fracf(z_0)^2+g(z_0)h(z_0)+r(z_0)$$" That doesn't make sense.
– zhw.
Jul 16 at 20:11










1 Answer
1






active

oldest

votes

















up vote
1
down vote



accepted










Your approach is fine. Note thatbeginalignlim_zto z_0fracf^2(z)+g(z)h(z)+r(z)&=lim_zto z_0fracfraca^2(z)(z-z_0)^2+fracb(z)z-z_0fracc(z)(z-z_0)^2+r(z)\&=lim_zto z_0fraca^2(z)+(z-z_0)b(z)c(z)+(z-z_0)^2c(z)\&=fraca^2(z_0)c(z_0)inmathbbCendalignand that therefore your function has a removable singularity at $z_0$ if $z_0$ is not a zero of $c$ and a pole otherwise (whose order is the order of $z_0$ as a zero of $c$).






share|cite|improve this answer























  • Why removable singularity? as $c(z_0)$ is analytic
    – newhere
    Jul 16 at 16:13










  • @newhere Right. I've edited my answer.
    – José Carlos Santos
    Jul 16 at 16:17










Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);








 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2853539%2ffind-singularity-type-fracfz-02gz-0hz-0rz-0%23new-answer', 'question_page');

);

Post as a guest






























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
1
down vote



accepted










Your approach is fine. Note thatbeginalignlim_zto z_0fracf^2(z)+g(z)h(z)+r(z)&=lim_zto z_0fracfraca^2(z)(z-z_0)^2+fracb(z)z-z_0fracc(z)(z-z_0)^2+r(z)\&=lim_zto z_0fraca^2(z)+(z-z_0)b(z)c(z)+(z-z_0)^2c(z)\&=fraca^2(z_0)c(z_0)inmathbbCendalignand that therefore your function has a removable singularity at $z_0$ if $z_0$ is not a zero of $c$ and a pole otherwise (whose order is the order of $z_0$ as a zero of $c$).






share|cite|improve this answer























  • Why removable singularity? as $c(z_0)$ is analytic
    – newhere
    Jul 16 at 16:13










  • @newhere Right. I've edited my answer.
    – José Carlos Santos
    Jul 16 at 16:17














up vote
1
down vote



accepted










Your approach is fine. Note thatbeginalignlim_zto z_0fracf^2(z)+g(z)h(z)+r(z)&=lim_zto z_0fracfraca^2(z)(z-z_0)^2+fracb(z)z-z_0fracc(z)(z-z_0)^2+r(z)\&=lim_zto z_0fraca^2(z)+(z-z_0)b(z)c(z)+(z-z_0)^2c(z)\&=fraca^2(z_0)c(z_0)inmathbbCendalignand that therefore your function has a removable singularity at $z_0$ if $z_0$ is not a zero of $c$ and a pole otherwise (whose order is the order of $z_0$ as a zero of $c$).






share|cite|improve this answer























  • Why removable singularity? as $c(z_0)$ is analytic
    – newhere
    Jul 16 at 16:13










  • @newhere Right. I've edited my answer.
    – José Carlos Santos
    Jul 16 at 16:17












up vote
1
down vote



accepted







up vote
1
down vote



accepted






Your approach is fine. Note thatbeginalignlim_zto z_0fracf^2(z)+g(z)h(z)+r(z)&=lim_zto z_0fracfraca^2(z)(z-z_0)^2+fracb(z)z-z_0fracc(z)(z-z_0)^2+r(z)\&=lim_zto z_0fraca^2(z)+(z-z_0)b(z)c(z)+(z-z_0)^2c(z)\&=fraca^2(z_0)c(z_0)inmathbbCendalignand that therefore your function has a removable singularity at $z_0$ if $z_0$ is not a zero of $c$ and a pole otherwise (whose order is the order of $z_0$ as a zero of $c$).






share|cite|improve this answer















Your approach is fine. Note thatbeginalignlim_zto z_0fracf^2(z)+g(z)h(z)+r(z)&=lim_zto z_0fracfraca^2(z)(z-z_0)^2+fracb(z)z-z_0fracc(z)(z-z_0)^2+r(z)\&=lim_zto z_0fraca^2(z)+(z-z_0)b(z)c(z)+(z-z_0)^2c(z)\&=fraca^2(z_0)c(z_0)inmathbbCendalignand that therefore your function has a removable singularity at $z_0$ if $z_0$ is not a zero of $c$ and a pole otherwise (whose order is the order of $z_0$ as a zero of $c$).







share|cite|improve this answer















share|cite|improve this answer



share|cite|improve this answer








edited Jul 16 at 16:17


























answered Jul 16 at 16:12









José Carlos Santos

114k1698177




114k1698177











  • Why removable singularity? as $c(z_0)$ is analytic
    – newhere
    Jul 16 at 16:13










  • @newhere Right. I've edited my answer.
    – José Carlos Santos
    Jul 16 at 16:17
















  • Why removable singularity? as $c(z_0)$ is analytic
    – newhere
    Jul 16 at 16:13










  • @newhere Right. I've edited my answer.
    – José Carlos Santos
    Jul 16 at 16:17















Why removable singularity? as $c(z_0)$ is analytic
– newhere
Jul 16 at 16:13




Why removable singularity? as $c(z_0)$ is analytic
– newhere
Jul 16 at 16:13












@newhere Right. I've edited my answer.
– José Carlos Santos
Jul 16 at 16:17




@newhere Right. I've edited my answer.
– José Carlos Santos
Jul 16 at 16:17












 

draft saved


draft discarded


























 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2853539%2ffind-singularity-type-fracfz-02gz-0hz-0rz-0%23new-answer', 'question_page');

);

Post as a guest













































































Comments

Popular posts from this blog

Color the edges and diagonals of a regular polygon

Relationship between determinant of matrix and determinant of adjoint?

What is the equation of a 3D cone with generalised tilt?