Bilinear form and signature
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
I have a bilinear form such that the associate matrix is
$$A = left(beginmatrix 0&0&k\ 0&k&0\ k&0&0endmatrixright)$$
For which $k$ the quadratic for has signature $(1,2)$?
matrices quadratic-forms bilinear-form
add a comment |Â
up vote
0
down vote
favorite
I have a bilinear form such that the associate matrix is
$$A = left(beginmatrix 0&0&k\ 0&k&0\ k&0&0endmatrixright)$$
For which $k$ the quadratic for has signature $(1,2)$?
matrices quadratic-forms bilinear-form
$F$ is definited like $F: xzâ²+yyâ²+zxâ²$
â Roberto De La Fuente
Jul 16 at 17:47
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I have a bilinear form such that the associate matrix is
$$A = left(beginmatrix 0&0&k\ 0&k&0\ k&0&0endmatrixright)$$
For which $k$ the quadratic for has signature $(1,2)$?
matrices quadratic-forms bilinear-form
I have a bilinear form such that the associate matrix is
$$A = left(beginmatrix 0&0&k\ 0&k&0\ k&0&0endmatrixright)$$
For which $k$ the quadratic for has signature $(1,2)$?
matrices quadratic-forms bilinear-form
edited Jul 16 at 18:34
Rodrigo de Azevedo
12.5k41751
12.5k41751
asked Jul 16 at 17:46
Roberto De La Fuente
417
417
$F$ is definited like $F: xzâ²+yyâ²+zxâ²$
â Roberto De La Fuente
Jul 16 at 17:47
add a comment |Â
$F$ is definited like $F: xzâ²+yyâ²+zxâ²$
â Roberto De La Fuente
Jul 16 at 17:47
$F$ is definited like $F: xzâ²+yyâ²+zxâ²$
â Roberto De La Fuente
Jul 16 at 17:47
$F$ is definited like $F: xzâ²+yyâ²+zxâ²$
â Roberto De La Fuente
Jul 16 at 17:47
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
0
down vote
This is all you need for Sylvester's Law of Inertia
$$ P^T H P = D $$
$$left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 1 \
- frac 1 2 & 0 & frac 1 2 \
endarray
right)
left(
beginarrayrrr
0 & 0 & k \
0 & k & 0 \
k & 0 & 0 \
endarray
right)
left(
beginarrayrrr
0 & 1 & - frac 1 2 \
1 & 0 & 0 \
0 & 1 & frac 1 2 \
endarray
right)
= left(
beginarrayrrr
k & 0 & 0 \
0 & 2 k& 0 \
0 & 0 & - frac k 2 \
endarray
right)
$$
$$ Q^T D Q = H $$
$$left(
beginarrayrrr
0 & frac 1 2 & - 1 \
1 & 0 & 0 \
0 & frac 1 2 & 1 \
endarray
right)
left(
beginarrayrrr
k & 0 & 0 \
0 & 2k & 0 \
0 & 0 & - frac k 2 \
endarray
right)
left(
beginarrayrrr
0 & 1 & 0 \
frac 1 2 & 0 & frac 1 2 \
- 1 & 0 & 1 \
endarray
right)
= left(
beginarrayrrr
0 & 0 & k \
0 & k & 0 \
k & 0 & 0 \
endarray
right)
$$
======================================================
Algorithm discussed at http://math.stackexchange.com/questions/1388421/reference-for-linear-algebra-books-that-teach-reverse-hermite-method-for-symmetr
https://en.wikipedia.org/wiki/Sylvester%27s_law_of_inertia
$$ H = left(
beginarrayrrr
0 & 0 & 1 \
0 & 1 & 0 \
1 & 0 & 0 \
endarray
right)
$$
$$ D_0 = H $$
$$ E_j^T D_j-1 E_j = D_j $$
$$ P_j-1 E_j = P_j $$
$$ E_j^-1 Q_j-1 = Q_j $$
$$ P_j Q_j = Q_j P_j = I $$
$$ P_j^T H P_j = D_j $$
$$ Q_j^T D_j Q_j = H $$
$$ H = left(
beginarrayrrr
0 & 0 & 1 \
0 & 1 & 0 \
1 & 0 & 0 \
endarray
right)
$$
==============================================
$$ E_1 = left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 0 \
0 & 0 & 1 \
endarray
right)
$$
$$ P_1 = left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 0 \
0 & 0 & 1 \
endarray
right)
, ; ; ; Q_1 = left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 0 \
0 & 0 & 1 \
endarray
right)
, ; ; ; D_1 = left(
beginarrayrrr
1 & 0 & 0 \
0 & 0 & 1 \
0 & 1 & 0 \
endarray
right)
$$
==============================================
$$ E_2 = left(
beginarrayrrr
1 & 0 & 0 \
0 & 1 & 0 \
0 & 1 & 1 \
endarray
right)
$$
$$ P_2 = left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 0 \
0 & 1 & 1 \
endarray
right)
, ; ; ; Q_2 = left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 0 \
- 1 & 0 & 1 \
endarray
right)
, ; ; ; D_2 = left(
beginarrayrrr
1 & 0 & 0 \
0 & 2 & 1 \
0 & 1 & 0 \
endarray
right)
$$
==============================================
$$ E_3 = left(
beginarrayrrr
1 & 0 & 0 \
0 & 1 & - frac 1 2 \
0 & 0 & 1 \
endarray
right)
$$
$$ P_3 = left(
beginarrayrrr
0 & 1 & - frac 1 2 \
1 & 0 & 0 \
0 & 1 & frac 1 2 \
endarray
right)
, ; ; ; Q_3 = left(
beginarrayrrr
0 & 1 & 0 \
frac 1 2 & 0 & frac 1 2 \
- 1 & 0 & 1 \
endarray
right)
, ; ; ; D_3 = left(
beginarrayrrr
1 & 0 & 0 \
0 & 2 & 0 \
0 & 0 & - frac 1 2 \
endarray
right)
$$
==============================================
$$ P^T H P = D $$
$$left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 1 \
- frac 1 2 & 0 & frac 1 2 \
endarray
right)
left(
beginarrayrrr
0 & 0 & 1 \
0 & 1 & 0 \
1 & 0 & 0 \
endarray
right)
left(
beginarrayrrr
0 & 1 & - frac 1 2 \
1 & 0 & 0 \
0 & 1 & frac 1 2 \
endarray
right)
= left(
beginarrayrrr
1 & 0 & 0 \
0 & 2 & 0 \
0 & 0 & - frac 1 2 \
endarray
right)
$$
$$ Q^T D Q = H $$
$$left(
beginarrayrrr
0 & frac 1 2 & - 1 \
1 & 0 & 0 \
0 & frac 1 2 & 1 \
endarray
right)
left(
beginarrayrrr
1 & 0 & 0 \
0 & 2 & 0 \
0 & 0 & - frac 1 2 \
endarray
right)
left(
beginarrayrrr
0 & 1 & 0 \
frac 1 2 & 0 & frac 1 2 \
- 1 & 0 & 1 \
endarray
right)
= left(
beginarrayrrr
0 & 0 & 1 \
0 & 1 & 0 \
1 & 0 & 0 \
endarray
right)
$$
i dont understand
â Roberto De La Fuente
Jul 16 at 18:16
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
This is all you need for Sylvester's Law of Inertia
$$ P^T H P = D $$
$$left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 1 \
- frac 1 2 & 0 & frac 1 2 \
endarray
right)
left(
beginarrayrrr
0 & 0 & k \
0 & k & 0 \
k & 0 & 0 \
endarray
right)
left(
beginarrayrrr
0 & 1 & - frac 1 2 \
1 & 0 & 0 \
0 & 1 & frac 1 2 \
endarray
right)
= left(
beginarrayrrr
k & 0 & 0 \
0 & 2 k& 0 \
0 & 0 & - frac k 2 \
endarray
right)
$$
$$ Q^T D Q = H $$
$$left(
beginarrayrrr
0 & frac 1 2 & - 1 \
1 & 0 & 0 \
0 & frac 1 2 & 1 \
endarray
right)
left(
beginarrayrrr
k & 0 & 0 \
0 & 2k & 0 \
0 & 0 & - frac k 2 \
endarray
right)
left(
beginarrayrrr
0 & 1 & 0 \
frac 1 2 & 0 & frac 1 2 \
- 1 & 0 & 1 \
endarray
right)
= left(
beginarrayrrr
0 & 0 & k \
0 & k & 0 \
k & 0 & 0 \
endarray
right)
$$
======================================================
Algorithm discussed at http://math.stackexchange.com/questions/1388421/reference-for-linear-algebra-books-that-teach-reverse-hermite-method-for-symmetr
https://en.wikipedia.org/wiki/Sylvester%27s_law_of_inertia
$$ H = left(
beginarrayrrr
0 & 0 & 1 \
0 & 1 & 0 \
1 & 0 & 0 \
endarray
right)
$$
$$ D_0 = H $$
$$ E_j^T D_j-1 E_j = D_j $$
$$ P_j-1 E_j = P_j $$
$$ E_j^-1 Q_j-1 = Q_j $$
$$ P_j Q_j = Q_j P_j = I $$
$$ P_j^T H P_j = D_j $$
$$ Q_j^T D_j Q_j = H $$
$$ H = left(
beginarrayrrr
0 & 0 & 1 \
0 & 1 & 0 \
1 & 0 & 0 \
endarray
right)
$$
==============================================
$$ E_1 = left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 0 \
0 & 0 & 1 \
endarray
right)
$$
$$ P_1 = left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 0 \
0 & 0 & 1 \
endarray
right)
, ; ; ; Q_1 = left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 0 \
0 & 0 & 1 \
endarray
right)
, ; ; ; D_1 = left(
beginarrayrrr
1 & 0 & 0 \
0 & 0 & 1 \
0 & 1 & 0 \
endarray
right)
$$
==============================================
$$ E_2 = left(
beginarrayrrr
1 & 0 & 0 \
0 & 1 & 0 \
0 & 1 & 1 \
endarray
right)
$$
$$ P_2 = left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 0 \
0 & 1 & 1 \
endarray
right)
, ; ; ; Q_2 = left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 0 \
- 1 & 0 & 1 \
endarray
right)
, ; ; ; D_2 = left(
beginarrayrrr
1 & 0 & 0 \
0 & 2 & 1 \
0 & 1 & 0 \
endarray
right)
$$
==============================================
$$ E_3 = left(
beginarrayrrr
1 & 0 & 0 \
0 & 1 & - frac 1 2 \
0 & 0 & 1 \
endarray
right)
$$
$$ P_3 = left(
beginarrayrrr
0 & 1 & - frac 1 2 \
1 & 0 & 0 \
0 & 1 & frac 1 2 \
endarray
right)
, ; ; ; Q_3 = left(
beginarrayrrr
0 & 1 & 0 \
frac 1 2 & 0 & frac 1 2 \
- 1 & 0 & 1 \
endarray
right)
, ; ; ; D_3 = left(
beginarrayrrr
1 & 0 & 0 \
0 & 2 & 0 \
0 & 0 & - frac 1 2 \
endarray
right)
$$
==============================================
$$ P^T H P = D $$
$$left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 1 \
- frac 1 2 & 0 & frac 1 2 \
endarray
right)
left(
beginarrayrrr
0 & 0 & 1 \
0 & 1 & 0 \
1 & 0 & 0 \
endarray
right)
left(
beginarrayrrr
0 & 1 & - frac 1 2 \
1 & 0 & 0 \
0 & 1 & frac 1 2 \
endarray
right)
= left(
beginarrayrrr
1 & 0 & 0 \
0 & 2 & 0 \
0 & 0 & - frac 1 2 \
endarray
right)
$$
$$ Q^T D Q = H $$
$$left(
beginarrayrrr
0 & frac 1 2 & - 1 \
1 & 0 & 0 \
0 & frac 1 2 & 1 \
endarray
right)
left(
beginarrayrrr
1 & 0 & 0 \
0 & 2 & 0 \
0 & 0 & - frac 1 2 \
endarray
right)
left(
beginarrayrrr
0 & 1 & 0 \
frac 1 2 & 0 & frac 1 2 \
- 1 & 0 & 1 \
endarray
right)
= left(
beginarrayrrr
0 & 0 & 1 \
0 & 1 & 0 \
1 & 0 & 0 \
endarray
right)
$$
i dont understand
â Roberto De La Fuente
Jul 16 at 18:16
add a comment |Â
up vote
0
down vote
This is all you need for Sylvester's Law of Inertia
$$ P^T H P = D $$
$$left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 1 \
- frac 1 2 & 0 & frac 1 2 \
endarray
right)
left(
beginarrayrrr
0 & 0 & k \
0 & k & 0 \
k & 0 & 0 \
endarray
right)
left(
beginarrayrrr
0 & 1 & - frac 1 2 \
1 & 0 & 0 \
0 & 1 & frac 1 2 \
endarray
right)
= left(
beginarrayrrr
k & 0 & 0 \
0 & 2 k& 0 \
0 & 0 & - frac k 2 \
endarray
right)
$$
$$ Q^T D Q = H $$
$$left(
beginarrayrrr
0 & frac 1 2 & - 1 \
1 & 0 & 0 \
0 & frac 1 2 & 1 \
endarray
right)
left(
beginarrayrrr
k & 0 & 0 \
0 & 2k & 0 \
0 & 0 & - frac k 2 \
endarray
right)
left(
beginarrayrrr
0 & 1 & 0 \
frac 1 2 & 0 & frac 1 2 \
- 1 & 0 & 1 \
endarray
right)
= left(
beginarrayrrr
0 & 0 & k \
0 & k & 0 \
k & 0 & 0 \
endarray
right)
$$
======================================================
Algorithm discussed at http://math.stackexchange.com/questions/1388421/reference-for-linear-algebra-books-that-teach-reverse-hermite-method-for-symmetr
https://en.wikipedia.org/wiki/Sylvester%27s_law_of_inertia
$$ H = left(
beginarrayrrr
0 & 0 & 1 \
0 & 1 & 0 \
1 & 0 & 0 \
endarray
right)
$$
$$ D_0 = H $$
$$ E_j^T D_j-1 E_j = D_j $$
$$ P_j-1 E_j = P_j $$
$$ E_j^-1 Q_j-1 = Q_j $$
$$ P_j Q_j = Q_j P_j = I $$
$$ P_j^T H P_j = D_j $$
$$ Q_j^T D_j Q_j = H $$
$$ H = left(
beginarrayrrr
0 & 0 & 1 \
0 & 1 & 0 \
1 & 0 & 0 \
endarray
right)
$$
==============================================
$$ E_1 = left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 0 \
0 & 0 & 1 \
endarray
right)
$$
$$ P_1 = left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 0 \
0 & 0 & 1 \
endarray
right)
, ; ; ; Q_1 = left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 0 \
0 & 0 & 1 \
endarray
right)
, ; ; ; D_1 = left(
beginarrayrrr
1 & 0 & 0 \
0 & 0 & 1 \
0 & 1 & 0 \
endarray
right)
$$
==============================================
$$ E_2 = left(
beginarrayrrr
1 & 0 & 0 \
0 & 1 & 0 \
0 & 1 & 1 \
endarray
right)
$$
$$ P_2 = left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 0 \
0 & 1 & 1 \
endarray
right)
, ; ; ; Q_2 = left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 0 \
- 1 & 0 & 1 \
endarray
right)
, ; ; ; D_2 = left(
beginarrayrrr
1 & 0 & 0 \
0 & 2 & 1 \
0 & 1 & 0 \
endarray
right)
$$
==============================================
$$ E_3 = left(
beginarrayrrr
1 & 0 & 0 \
0 & 1 & - frac 1 2 \
0 & 0 & 1 \
endarray
right)
$$
$$ P_3 = left(
beginarrayrrr
0 & 1 & - frac 1 2 \
1 & 0 & 0 \
0 & 1 & frac 1 2 \
endarray
right)
, ; ; ; Q_3 = left(
beginarrayrrr
0 & 1 & 0 \
frac 1 2 & 0 & frac 1 2 \
- 1 & 0 & 1 \
endarray
right)
, ; ; ; D_3 = left(
beginarrayrrr
1 & 0 & 0 \
0 & 2 & 0 \
0 & 0 & - frac 1 2 \
endarray
right)
$$
==============================================
$$ P^T H P = D $$
$$left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 1 \
- frac 1 2 & 0 & frac 1 2 \
endarray
right)
left(
beginarrayrrr
0 & 0 & 1 \
0 & 1 & 0 \
1 & 0 & 0 \
endarray
right)
left(
beginarrayrrr
0 & 1 & - frac 1 2 \
1 & 0 & 0 \
0 & 1 & frac 1 2 \
endarray
right)
= left(
beginarrayrrr
1 & 0 & 0 \
0 & 2 & 0 \
0 & 0 & - frac 1 2 \
endarray
right)
$$
$$ Q^T D Q = H $$
$$left(
beginarrayrrr
0 & frac 1 2 & - 1 \
1 & 0 & 0 \
0 & frac 1 2 & 1 \
endarray
right)
left(
beginarrayrrr
1 & 0 & 0 \
0 & 2 & 0 \
0 & 0 & - frac 1 2 \
endarray
right)
left(
beginarrayrrr
0 & 1 & 0 \
frac 1 2 & 0 & frac 1 2 \
- 1 & 0 & 1 \
endarray
right)
= left(
beginarrayrrr
0 & 0 & 1 \
0 & 1 & 0 \
1 & 0 & 0 \
endarray
right)
$$
i dont understand
â Roberto De La Fuente
Jul 16 at 18:16
add a comment |Â
up vote
0
down vote
up vote
0
down vote
This is all you need for Sylvester's Law of Inertia
$$ P^T H P = D $$
$$left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 1 \
- frac 1 2 & 0 & frac 1 2 \
endarray
right)
left(
beginarrayrrr
0 & 0 & k \
0 & k & 0 \
k & 0 & 0 \
endarray
right)
left(
beginarrayrrr
0 & 1 & - frac 1 2 \
1 & 0 & 0 \
0 & 1 & frac 1 2 \
endarray
right)
= left(
beginarrayrrr
k & 0 & 0 \
0 & 2 k& 0 \
0 & 0 & - frac k 2 \
endarray
right)
$$
$$ Q^T D Q = H $$
$$left(
beginarrayrrr
0 & frac 1 2 & - 1 \
1 & 0 & 0 \
0 & frac 1 2 & 1 \
endarray
right)
left(
beginarrayrrr
k & 0 & 0 \
0 & 2k & 0 \
0 & 0 & - frac k 2 \
endarray
right)
left(
beginarrayrrr
0 & 1 & 0 \
frac 1 2 & 0 & frac 1 2 \
- 1 & 0 & 1 \
endarray
right)
= left(
beginarrayrrr
0 & 0 & k \
0 & k & 0 \
k & 0 & 0 \
endarray
right)
$$
======================================================
Algorithm discussed at http://math.stackexchange.com/questions/1388421/reference-for-linear-algebra-books-that-teach-reverse-hermite-method-for-symmetr
https://en.wikipedia.org/wiki/Sylvester%27s_law_of_inertia
$$ H = left(
beginarrayrrr
0 & 0 & 1 \
0 & 1 & 0 \
1 & 0 & 0 \
endarray
right)
$$
$$ D_0 = H $$
$$ E_j^T D_j-1 E_j = D_j $$
$$ P_j-1 E_j = P_j $$
$$ E_j^-1 Q_j-1 = Q_j $$
$$ P_j Q_j = Q_j P_j = I $$
$$ P_j^T H P_j = D_j $$
$$ Q_j^T D_j Q_j = H $$
$$ H = left(
beginarrayrrr
0 & 0 & 1 \
0 & 1 & 0 \
1 & 0 & 0 \
endarray
right)
$$
==============================================
$$ E_1 = left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 0 \
0 & 0 & 1 \
endarray
right)
$$
$$ P_1 = left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 0 \
0 & 0 & 1 \
endarray
right)
, ; ; ; Q_1 = left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 0 \
0 & 0 & 1 \
endarray
right)
, ; ; ; D_1 = left(
beginarrayrrr
1 & 0 & 0 \
0 & 0 & 1 \
0 & 1 & 0 \
endarray
right)
$$
==============================================
$$ E_2 = left(
beginarrayrrr
1 & 0 & 0 \
0 & 1 & 0 \
0 & 1 & 1 \
endarray
right)
$$
$$ P_2 = left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 0 \
0 & 1 & 1 \
endarray
right)
, ; ; ; Q_2 = left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 0 \
- 1 & 0 & 1 \
endarray
right)
, ; ; ; D_2 = left(
beginarrayrrr
1 & 0 & 0 \
0 & 2 & 1 \
0 & 1 & 0 \
endarray
right)
$$
==============================================
$$ E_3 = left(
beginarrayrrr
1 & 0 & 0 \
0 & 1 & - frac 1 2 \
0 & 0 & 1 \
endarray
right)
$$
$$ P_3 = left(
beginarrayrrr
0 & 1 & - frac 1 2 \
1 & 0 & 0 \
0 & 1 & frac 1 2 \
endarray
right)
, ; ; ; Q_3 = left(
beginarrayrrr
0 & 1 & 0 \
frac 1 2 & 0 & frac 1 2 \
- 1 & 0 & 1 \
endarray
right)
, ; ; ; D_3 = left(
beginarrayrrr
1 & 0 & 0 \
0 & 2 & 0 \
0 & 0 & - frac 1 2 \
endarray
right)
$$
==============================================
$$ P^T H P = D $$
$$left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 1 \
- frac 1 2 & 0 & frac 1 2 \
endarray
right)
left(
beginarrayrrr
0 & 0 & 1 \
0 & 1 & 0 \
1 & 0 & 0 \
endarray
right)
left(
beginarrayrrr
0 & 1 & - frac 1 2 \
1 & 0 & 0 \
0 & 1 & frac 1 2 \
endarray
right)
= left(
beginarrayrrr
1 & 0 & 0 \
0 & 2 & 0 \
0 & 0 & - frac 1 2 \
endarray
right)
$$
$$ Q^T D Q = H $$
$$left(
beginarrayrrr
0 & frac 1 2 & - 1 \
1 & 0 & 0 \
0 & frac 1 2 & 1 \
endarray
right)
left(
beginarrayrrr
1 & 0 & 0 \
0 & 2 & 0 \
0 & 0 & - frac 1 2 \
endarray
right)
left(
beginarrayrrr
0 & 1 & 0 \
frac 1 2 & 0 & frac 1 2 \
- 1 & 0 & 1 \
endarray
right)
= left(
beginarrayrrr
0 & 0 & 1 \
0 & 1 & 0 \
1 & 0 & 0 \
endarray
right)
$$
This is all you need for Sylvester's Law of Inertia
$$ P^T H P = D $$
$$left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 1 \
- frac 1 2 & 0 & frac 1 2 \
endarray
right)
left(
beginarrayrrr
0 & 0 & k \
0 & k & 0 \
k & 0 & 0 \
endarray
right)
left(
beginarrayrrr
0 & 1 & - frac 1 2 \
1 & 0 & 0 \
0 & 1 & frac 1 2 \
endarray
right)
= left(
beginarrayrrr
k & 0 & 0 \
0 & 2 k& 0 \
0 & 0 & - frac k 2 \
endarray
right)
$$
$$ Q^T D Q = H $$
$$left(
beginarrayrrr
0 & frac 1 2 & - 1 \
1 & 0 & 0 \
0 & frac 1 2 & 1 \
endarray
right)
left(
beginarrayrrr
k & 0 & 0 \
0 & 2k & 0 \
0 & 0 & - frac k 2 \
endarray
right)
left(
beginarrayrrr
0 & 1 & 0 \
frac 1 2 & 0 & frac 1 2 \
- 1 & 0 & 1 \
endarray
right)
= left(
beginarrayrrr
0 & 0 & k \
0 & k & 0 \
k & 0 & 0 \
endarray
right)
$$
======================================================
Algorithm discussed at http://math.stackexchange.com/questions/1388421/reference-for-linear-algebra-books-that-teach-reverse-hermite-method-for-symmetr
https://en.wikipedia.org/wiki/Sylvester%27s_law_of_inertia
$$ H = left(
beginarrayrrr
0 & 0 & 1 \
0 & 1 & 0 \
1 & 0 & 0 \
endarray
right)
$$
$$ D_0 = H $$
$$ E_j^T D_j-1 E_j = D_j $$
$$ P_j-1 E_j = P_j $$
$$ E_j^-1 Q_j-1 = Q_j $$
$$ P_j Q_j = Q_j P_j = I $$
$$ P_j^T H P_j = D_j $$
$$ Q_j^T D_j Q_j = H $$
$$ H = left(
beginarrayrrr
0 & 0 & 1 \
0 & 1 & 0 \
1 & 0 & 0 \
endarray
right)
$$
==============================================
$$ E_1 = left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 0 \
0 & 0 & 1 \
endarray
right)
$$
$$ P_1 = left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 0 \
0 & 0 & 1 \
endarray
right)
, ; ; ; Q_1 = left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 0 \
0 & 0 & 1 \
endarray
right)
, ; ; ; D_1 = left(
beginarrayrrr
1 & 0 & 0 \
0 & 0 & 1 \
0 & 1 & 0 \
endarray
right)
$$
==============================================
$$ E_2 = left(
beginarrayrrr
1 & 0 & 0 \
0 & 1 & 0 \
0 & 1 & 1 \
endarray
right)
$$
$$ P_2 = left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 0 \
0 & 1 & 1 \
endarray
right)
, ; ; ; Q_2 = left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 0 \
- 1 & 0 & 1 \
endarray
right)
, ; ; ; D_2 = left(
beginarrayrrr
1 & 0 & 0 \
0 & 2 & 1 \
0 & 1 & 0 \
endarray
right)
$$
==============================================
$$ E_3 = left(
beginarrayrrr
1 & 0 & 0 \
0 & 1 & - frac 1 2 \
0 & 0 & 1 \
endarray
right)
$$
$$ P_3 = left(
beginarrayrrr
0 & 1 & - frac 1 2 \
1 & 0 & 0 \
0 & 1 & frac 1 2 \
endarray
right)
, ; ; ; Q_3 = left(
beginarrayrrr
0 & 1 & 0 \
frac 1 2 & 0 & frac 1 2 \
- 1 & 0 & 1 \
endarray
right)
, ; ; ; D_3 = left(
beginarrayrrr
1 & 0 & 0 \
0 & 2 & 0 \
0 & 0 & - frac 1 2 \
endarray
right)
$$
==============================================
$$ P^T H P = D $$
$$left(
beginarrayrrr
0 & 1 & 0 \
1 & 0 & 1 \
- frac 1 2 & 0 & frac 1 2 \
endarray
right)
left(
beginarrayrrr
0 & 0 & 1 \
0 & 1 & 0 \
1 & 0 & 0 \
endarray
right)
left(
beginarrayrrr
0 & 1 & - frac 1 2 \
1 & 0 & 0 \
0 & 1 & frac 1 2 \
endarray
right)
= left(
beginarrayrrr
1 & 0 & 0 \
0 & 2 & 0 \
0 & 0 & - frac 1 2 \
endarray
right)
$$
$$ Q^T D Q = H $$
$$left(
beginarrayrrr
0 & frac 1 2 & - 1 \
1 & 0 & 0 \
0 & frac 1 2 & 1 \
endarray
right)
left(
beginarrayrrr
1 & 0 & 0 \
0 & 2 & 0 \
0 & 0 & - frac 1 2 \
endarray
right)
left(
beginarrayrrr
0 & 1 & 0 \
frac 1 2 & 0 & frac 1 2 \
- 1 & 0 & 1 \
endarray
right)
= left(
beginarrayrrr
0 & 0 & 1 \
0 & 1 & 0 \
1 & 0 & 0 \
endarray
right)
$$
answered Jul 16 at 18:05
Will Jagy
97.2k594196
97.2k594196
i dont understand
â Roberto De La Fuente
Jul 16 at 18:16
add a comment |Â
i dont understand
â Roberto De La Fuente
Jul 16 at 18:16
i dont understand
â Roberto De La Fuente
Jul 16 at 18:16
i dont understand
â Roberto De La Fuente
Jul 16 at 18:16
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2853661%2fbilinear-form-and-signature%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
$F$ is definited like $F: xzâ²+yyâ²+zxâ²$
â Roberto De La Fuente
Jul 16 at 17:47