Let $K$ a operator of continued fraction.Is this true?
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
$DeclareMathOperator*KK$
Let $K$ a operator of continued fraction.
Show that:
$$1+sum_k=1^n(-1)^kvarphi_4cdots varphi_2k+2=frac11+displaystyleK_k=2^n+1fracvarphi_2k1-varphi_2k$$
What's a name of this little theorem? This theorem is true?
number-theory elementary-number-theory trigonometry continued-fractions
add a comment |Â
up vote
1
down vote
favorite
$DeclareMathOperator*KK$
Let $K$ a operator of continued fraction.
Show that:
$$1+sum_k=1^n(-1)^kvarphi_4cdots varphi_2k+2=frac11+displaystyleK_k=2^n+1fracvarphi_2k1-varphi_2k$$
What's a name of this little theorem? This theorem is true?
number-theory elementary-number-theory trigonometry continued-fractions
In other words, $1+sum_k=1^n(-1)^kprod_j=2^k+1a_j=frac11+displaystyleK_k=2^n+1fraca_k1-a_k $.
â marty cohen
Jul 16 at 19:48
Probably Euler.
â marty cohen
Jul 16 at 19:49
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
$DeclareMathOperator*KK$
Let $K$ a operator of continued fraction.
Show that:
$$1+sum_k=1^n(-1)^kvarphi_4cdots varphi_2k+2=frac11+displaystyleK_k=2^n+1fracvarphi_2k1-varphi_2k$$
What's a name of this little theorem? This theorem is true?
number-theory elementary-number-theory trigonometry continued-fractions
$DeclareMathOperator*KK$
Let $K$ a operator of continued fraction.
Show that:
$$1+sum_k=1^n(-1)^kvarphi_4cdots varphi_2k+2=frac11+displaystyleK_k=2^n+1fracvarphi_2k1-varphi_2k$$
What's a name of this little theorem? This theorem is true?
number-theory elementary-number-theory trigonometry continued-fractions
edited Jul 16 at 19:41
Fabio Lucchini
5,62411025
5,62411025
asked Jul 16 at 17:38
Israel Meireles Chrisostomo
562313
562313
In other words, $1+sum_k=1^n(-1)^kprod_j=2^k+1a_j=frac11+displaystyleK_k=2^n+1fraca_k1-a_k $.
â marty cohen
Jul 16 at 19:48
Probably Euler.
â marty cohen
Jul 16 at 19:49
add a comment |Â
In other words, $1+sum_k=1^n(-1)^kprod_j=2^k+1a_j=frac11+displaystyleK_k=2^n+1fraca_k1-a_k $.
â marty cohen
Jul 16 at 19:48
Probably Euler.
â marty cohen
Jul 16 at 19:49
In other words, $1+sum_k=1^n(-1)^kprod_j=2^k+1a_j=frac11+displaystyleK_k=2^n+1fraca_k1-a_k $.
â marty cohen
Jul 16 at 19:48
In other words, $1+sum_k=1^n(-1)^kprod_j=2^k+1a_j=frac11+displaystyleK_k=2^n+1fraca_k1-a_k $.
â marty cohen
Jul 16 at 19:48
Probably Euler.
â marty cohen
Jul 16 at 19:49
Probably Euler.
â marty cohen
Jul 16 at 19:49
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2853654%2flet-k-a-operator-of-continued-fraction-is-this-true%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
In other words, $1+sum_k=1^n(-1)^kprod_j=2^k+1a_j=frac11+displaystyleK_k=2^n+1fraca_k1-a_k $.
â marty cohen
Jul 16 at 19:48
Probably Euler.
â marty cohen
Jul 16 at 19:49