Tricky Integral involving radicals

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
8
down vote

favorite
1












I am trying to evaluate the following definite integral (for $a>0$):



$$I=int_0^1left( left( 1-x^a right)^frac1a-x right)^2dx$$
Neither the substitution $u=left( 1-x^a right)^frac1a$ nor $u=left( 1-x^a right)^frac1a-x$ are appropriate.I have also tried Feynman’s trick (differentiated with respect to a) but I didn’t get any success. Thanks in advance.







share|cite|improve this question

















  • 1




    How about $u=x^a$?
    – Chris2018
    Jul 16 at 15:06










  • I am not sure let me try it
    – user577488
    Jul 16 at 15:09














up vote
8
down vote

favorite
1












I am trying to evaluate the following definite integral (for $a>0$):



$$I=int_0^1left( left( 1-x^a right)^frac1a-x right)^2dx$$
Neither the substitution $u=left( 1-x^a right)^frac1a$ nor $u=left( 1-x^a right)^frac1a-x$ are appropriate.I have also tried Feynman’s trick (differentiated with respect to a) but I didn’t get any success. Thanks in advance.







share|cite|improve this question

















  • 1




    How about $u=x^a$?
    – Chris2018
    Jul 16 at 15:06










  • I am not sure let me try it
    – user577488
    Jul 16 at 15:09












up vote
8
down vote

favorite
1









up vote
8
down vote

favorite
1






1





I am trying to evaluate the following definite integral (for $a>0$):



$$I=int_0^1left( left( 1-x^a right)^frac1a-x right)^2dx$$
Neither the substitution $u=left( 1-x^a right)^frac1a$ nor $u=left( 1-x^a right)^frac1a-x$ are appropriate.I have also tried Feynman’s trick (differentiated with respect to a) but I didn’t get any success. Thanks in advance.







share|cite|improve this question













I am trying to evaluate the following definite integral (for $a>0$):



$$I=int_0^1left( left( 1-x^a right)^frac1a-x right)^2dx$$
Neither the substitution $u=left( 1-x^a right)^frac1a$ nor $u=left( 1-x^a right)^frac1a-x$ are appropriate.I have also tried Feynman’s trick (differentiated with respect to a) but I didn’t get any success. Thanks in advance.









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 16 at 15:12
























asked Jul 16 at 15:03









user577488

1085




1085







  • 1




    How about $u=x^a$?
    – Chris2018
    Jul 16 at 15:06










  • I am not sure let me try it
    – user577488
    Jul 16 at 15:09












  • 1




    How about $u=x^a$?
    – Chris2018
    Jul 16 at 15:06










  • I am not sure let me try it
    – user577488
    Jul 16 at 15:09







1




1




How about $u=x^a$?
– Chris2018
Jul 16 at 15:06




How about $u=x^a$?
– Chris2018
Jul 16 at 15:06












I am not sure let me try it
– user577488
Jul 16 at 15:09




I am not sure let me try it
– user577488
Jul 16 at 15:09










2 Answers
2






active

oldest

votes

















up vote
8
down vote



accepted










Using the substitution $u=left( 1-x^a right)^frac1a$
$$I=int_0^1left( left( 1-x^a right)^frac1a-x right)^2dx=int_0^1u^a-1left( 1-u^a right)^frac1a-1left( u-left( 1-u^a right)^frac1a right)^2du$$
Since both $x and u$ are dummy variables
$$beginalign
& I=frac12int_0^1left( left( 1-x^a right)^frac1a-x right)^2+x^a-1left( 1-x^a right)^frac1a-1left( x-left( 1-x^a right)^frac1a right)^2dx \
& quad =frac12int_0^1left( left( 1-x^a right)^frac1a-x right)^2left( 1+x^a-1left( 1-x^a right)^frac1a-1 right)dx \
& quad =frac12int_0^1-frac13fracddxleft( left( 1-x^a right)^frac1a-x right)^3dx \
& quad =frac13 \
endalign$$






share|cite|improve this answer




























    up vote
    6
    down vote













    Hint. By the change of variable
    $$
    u=x^a,qquad x=u^1/a,qquad dx=frac1au^1/a-1du,
    $$ one gets
    $$
    I=int_0^1left( left( 1-x^a right)^frac1a-x right)^2dx=frac1aint_0^1left( left( 1-uright)^frac1a-u^1/a right)^2u^1/a-1du
    $$ then by expanding the square one is led to apply the standard Euler beta evaluation:
    $$
    int_0^1(1-u)^s-1 u^t-1,du = fracGamma(s)Gamma(t)Gamma(s+t),quad operatornameRe(s)>0,,operatornameRe(t)>0.
    $$






    share|cite|improve this answer





















      Your Answer




      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: false,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );








       

      draft saved


      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2853489%2ftricky-integral-involving-radicals%23new-answer', 'question_page');

      );

      Post as a guest






























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      8
      down vote



      accepted










      Using the substitution $u=left( 1-x^a right)^frac1a$
      $$I=int_0^1left( left( 1-x^a right)^frac1a-x right)^2dx=int_0^1u^a-1left( 1-u^a right)^frac1a-1left( u-left( 1-u^a right)^frac1a right)^2du$$
      Since both $x and u$ are dummy variables
      $$beginalign
      & I=frac12int_0^1left( left( 1-x^a right)^frac1a-x right)^2+x^a-1left( 1-x^a right)^frac1a-1left( x-left( 1-x^a right)^frac1a right)^2dx \
      & quad =frac12int_0^1left( left( 1-x^a right)^frac1a-x right)^2left( 1+x^a-1left( 1-x^a right)^frac1a-1 right)dx \
      & quad =frac12int_0^1-frac13fracddxleft( left( 1-x^a right)^frac1a-x right)^3dx \
      & quad =frac13 \
      endalign$$






      share|cite|improve this answer

























        up vote
        8
        down vote



        accepted










        Using the substitution $u=left( 1-x^a right)^frac1a$
        $$I=int_0^1left( left( 1-x^a right)^frac1a-x right)^2dx=int_0^1u^a-1left( 1-u^a right)^frac1a-1left( u-left( 1-u^a right)^frac1a right)^2du$$
        Since both $x and u$ are dummy variables
        $$beginalign
        & I=frac12int_0^1left( left( 1-x^a right)^frac1a-x right)^2+x^a-1left( 1-x^a right)^frac1a-1left( x-left( 1-x^a right)^frac1a right)^2dx \
        & quad =frac12int_0^1left( left( 1-x^a right)^frac1a-x right)^2left( 1+x^a-1left( 1-x^a right)^frac1a-1 right)dx \
        & quad =frac12int_0^1-frac13fracddxleft( left( 1-x^a right)^frac1a-x right)^3dx \
        & quad =frac13 \
        endalign$$






        share|cite|improve this answer























          up vote
          8
          down vote



          accepted







          up vote
          8
          down vote



          accepted






          Using the substitution $u=left( 1-x^a right)^frac1a$
          $$I=int_0^1left( left( 1-x^a right)^frac1a-x right)^2dx=int_0^1u^a-1left( 1-u^a right)^frac1a-1left( u-left( 1-u^a right)^frac1a right)^2du$$
          Since both $x and u$ are dummy variables
          $$beginalign
          & I=frac12int_0^1left( left( 1-x^a right)^frac1a-x right)^2+x^a-1left( 1-x^a right)^frac1a-1left( x-left( 1-x^a right)^frac1a right)^2dx \
          & quad =frac12int_0^1left( left( 1-x^a right)^frac1a-x right)^2left( 1+x^a-1left( 1-x^a right)^frac1a-1 right)dx \
          & quad =frac12int_0^1-frac13fracddxleft( left( 1-x^a right)^frac1a-x right)^3dx \
          & quad =frac13 \
          endalign$$






          share|cite|improve this answer













          Using the substitution $u=left( 1-x^a right)^frac1a$
          $$I=int_0^1left( left( 1-x^a right)^frac1a-x right)^2dx=int_0^1u^a-1left( 1-u^a right)^frac1a-1left( u-left( 1-u^a right)^frac1a right)^2du$$
          Since both $x and u$ are dummy variables
          $$beginalign
          & I=frac12int_0^1left( left( 1-x^a right)^frac1a-x right)^2+x^a-1left( 1-x^a right)^frac1a-1left( x-left( 1-x^a right)^frac1a right)^2dx \
          & quad =frac12int_0^1left( left( 1-x^a right)^frac1a-x right)^2left( 1+x^a-1left( 1-x^a right)^frac1a-1 right)dx \
          & quad =frac12int_0^1-frac13fracddxleft( left( 1-x^a right)^frac1a-x right)^3dx \
          & quad =frac13 \
          endalign$$







          share|cite|improve this answer













          share|cite|improve this answer



          share|cite|improve this answer











          answered Jul 16 at 15:23









          Vincent Law

          1,467212




          1,467212




















              up vote
              6
              down vote













              Hint. By the change of variable
              $$
              u=x^a,qquad x=u^1/a,qquad dx=frac1au^1/a-1du,
              $$ one gets
              $$
              I=int_0^1left( left( 1-x^a right)^frac1a-x right)^2dx=frac1aint_0^1left( left( 1-uright)^frac1a-u^1/a right)^2u^1/a-1du
              $$ then by expanding the square one is led to apply the standard Euler beta evaluation:
              $$
              int_0^1(1-u)^s-1 u^t-1,du = fracGamma(s)Gamma(t)Gamma(s+t),quad operatornameRe(s)>0,,operatornameRe(t)>0.
              $$






              share|cite|improve this answer

























                up vote
                6
                down vote













                Hint. By the change of variable
                $$
                u=x^a,qquad x=u^1/a,qquad dx=frac1au^1/a-1du,
                $$ one gets
                $$
                I=int_0^1left( left( 1-x^a right)^frac1a-x right)^2dx=frac1aint_0^1left( left( 1-uright)^frac1a-u^1/a right)^2u^1/a-1du
                $$ then by expanding the square one is led to apply the standard Euler beta evaluation:
                $$
                int_0^1(1-u)^s-1 u^t-1,du = fracGamma(s)Gamma(t)Gamma(s+t),quad operatornameRe(s)>0,,operatornameRe(t)>0.
                $$






                share|cite|improve this answer























                  up vote
                  6
                  down vote










                  up vote
                  6
                  down vote









                  Hint. By the change of variable
                  $$
                  u=x^a,qquad x=u^1/a,qquad dx=frac1au^1/a-1du,
                  $$ one gets
                  $$
                  I=int_0^1left( left( 1-x^a right)^frac1a-x right)^2dx=frac1aint_0^1left( left( 1-uright)^frac1a-u^1/a right)^2u^1/a-1du
                  $$ then by expanding the square one is led to apply the standard Euler beta evaluation:
                  $$
                  int_0^1(1-u)^s-1 u^t-1,du = fracGamma(s)Gamma(t)Gamma(s+t),quad operatornameRe(s)>0,,operatornameRe(t)>0.
                  $$






                  share|cite|improve this answer













                  Hint. By the change of variable
                  $$
                  u=x^a,qquad x=u^1/a,qquad dx=frac1au^1/a-1du,
                  $$ one gets
                  $$
                  I=int_0^1left( left( 1-x^a right)^frac1a-x right)^2dx=frac1aint_0^1left( left( 1-uright)^frac1a-u^1/a right)^2u^1/a-1du
                  $$ then by expanding the square one is led to apply the standard Euler beta evaluation:
                  $$
                  int_0^1(1-u)^s-1 u^t-1,du = fracGamma(s)Gamma(t)Gamma(s+t),quad operatornameRe(s)>0,,operatornameRe(t)>0.
                  $$







                  share|cite|improve this answer













                  share|cite|improve this answer



                  share|cite|improve this answer











                  answered Jul 16 at 15:14









                  Olivier Oloa

                  106k17173292




                  106k17173292






















                       

                      draft saved


                      draft discarded


























                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2853489%2ftricky-integral-involving-radicals%23new-answer', 'question_page');

                      );

                      Post as a guest













































































                      Comments

                      Popular posts from this blog

                      What is the equation of a 3D cone with generalised tilt?

                      Color the edges and diagonals of a regular polygon

                      Relationship between determinant of matrix and determinant of adjoint?