Tricky Integral involving radicals
Clash Royale CLAN TAG#URR8PPP
up vote
8
down vote
favorite
I am trying to evaluate the following definite integral (for $a>0$):
$$I=int_0^1left( left( 1-x^a right)^frac1a-x right)^2dx$$
Neither the substitution $u=left( 1-x^a right)^frac1a$ nor $u=left( 1-x^a right)^frac1a-x$ are appropriate.I have also tried FeynmanâÂÂs trick (differentiated with respect to a) but I didnâÂÂt get any success. Thanks in advance.
calculus integration radicals
add a comment |Â
up vote
8
down vote
favorite
I am trying to evaluate the following definite integral (for $a>0$):
$$I=int_0^1left( left( 1-x^a right)^frac1a-x right)^2dx$$
Neither the substitution $u=left( 1-x^a right)^frac1a$ nor $u=left( 1-x^a right)^frac1a-x$ are appropriate.I have also tried FeynmanâÂÂs trick (differentiated with respect to a) but I didnâÂÂt get any success. Thanks in advance.
calculus integration radicals
1
How about $u=x^a$?
â Chris2018
Jul 16 at 15:06
I am not sure let me try it
â user577488
Jul 16 at 15:09
add a comment |Â
up vote
8
down vote
favorite
up vote
8
down vote
favorite
I am trying to evaluate the following definite integral (for $a>0$):
$$I=int_0^1left( left( 1-x^a right)^frac1a-x right)^2dx$$
Neither the substitution $u=left( 1-x^a right)^frac1a$ nor $u=left( 1-x^a right)^frac1a-x$ are appropriate.I have also tried FeynmanâÂÂs trick (differentiated with respect to a) but I didnâÂÂt get any success. Thanks in advance.
calculus integration radicals
I am trying to evaluate the following definite integral (for $a>0$):
$$I=int_0^1left( left( 1-x^a right)^frac1a-x right)^2dx$$
Neither the substitution $u=left( 1-x^a right)^frac1a$ nor $u=left( 1-x^a right)^frac1a-x$ are appropriate.I have also tried FeynmanâÂÂs trick (differentiated with respect to a) but I didnâÂÂt get any success. Thanks in advance.
calculus integration radicals
edited Jul 16 at 15:12
asked Jul 16 at 15:03
user577488
1085
1085
1
How about $u=x^a$?
â Chris2018
Jul 16 at 15:06
I am not sure let me try it
â user577488
Jul 16 at 15:09
add a comment |Â
1
How about $u=x^a$?
â Chris2018
Jul 16 at 15:06
I am not sure let me try it
â user577488
Jul 16 at 15:09
1
1
How about $u=x^a$?
â Chris2018
Jul 16 at 15:06
How about $u=x^a$?
â Chris2018
Jul 16 at 15:06
I am not sure let me try it
â user577488
Jul 16 at 15:09
I am not sure let me try it
â user577488
Jul 16 at 15:09
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
8
down vote
accepted
Using the substitution $u=left( 1-x^a right)^frac1a$
$$I=int_0^1left( left( 1-x^a right)^frac1a-x right)^2dx=int_0^1u^a-1left( 1-u^a right)^frac1a-1left( u-left( 1-u^a right)^frac1a right)^2du$$
Since both $x and u$ are dummy variables
$$beginalign
& I=frac12int_0^1left( left( 1-x^a right)^frac1a-x right)^2+x^a-1left( 1-x^a right)^frac1a-1left( x-left( 1-x^a right)^frac1a right)^2dx \
& quad =frac12int_0^1left( left( 1-x^a right)^frac1a-x right)^2left( 1+x^a-1left( 1-x^a right)^frac1a-1 right)dx \
& quad =frac12int_0^1-frac13fracddxleft( left( 1-x^a right)^frac1a-x right)^3dx \
& quad =frac13 \
endalign$$
add a comment |Â
up vote
6
down vote
Hint. By the change of variable
$$
u=x^a,qquad x=u^1/a,qquad dx=frac1au^1/a-1du,
$$ one gets
$$
I=int_0^1left( left( 1-x^a right)^frac1a-x right)^2dx=frac1aint_0^1left( left( 1-uright)^frac1a-u^1/a right)^2u^1/a-1du
$$ then by expanding the square one is led to apply the standard Euler beta evaluation:
$$
int_0^1(1-u)^s-1 u^t-1,du = fracGamma(s)Gamma(t)Gamma(s+t),quad operatornameRe(s)>0,,operatornameRe(t)>0.
$$
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
8
down vote
accepted
Using the substitution $u=left( 1-x^a right)^frac1a$
$$I=int_0^1left( left( 1-x^a right)^frac1a-x right)^2dx=int_0^1u^a-1left( 1-u^a right)^frac1a-1left( u-left( 1-u^a right)^frac1a right)^2du$$
Since both $x and u$ are dummy variables
$$beginalign
& I=frac12int_0^1left( left( 1-x^a right)^frac1a-x right)^2+x^a-1left( 1-x^a right)^frac1a-1left( x-left( 1-x^a right)^frac1a right)^2dx \
& quad =frac12int_0^1left( left( 1-x^a right)^frac1a-x right)^2left( 1+x^a-1left( 1-x^a right)^frac1a-1 right)dx \
& quad =frac12int_0^1-frac13fracddxleft( left( 1-x^a right)^frac1a-x right)^3dx \
& quad =frac13 \
endalign$$
add a comment |Â
up vote
8
down vote
accepted
Using the substitution $u=left( 1-x^a right)^frac1a$
$$I=int_0^1left( left( 1-x^a right)^frac1a-x right)^2dx=int_0^1u^a-1left( 1-u^a right)^frac1a-1left( u-left( 1-u^a right)^frac1a right)^2du$$
Since both $x and u$ are dummy variables
$$beginalign
& I=frac12int_0^1left( left( 1-x^a right)^frac1a-x right)^2+x^a-1left( 1-x^a right)^frac1a-1left( x-left( 1-x^a right)^frac1a right)^2dx \
& quad =frac12int_0^1left( left( 1-x^a right)^frac1a-x right)^2left( 1+x^a-1left( 1-x^a right)^frac1a-1 right)dx \
& quad =frac12int_0^1-frac13fracddxleft( left( 1-x^a right)^frac1a-x right)^3dx \
& quad =frac13 \
endalign$$
add a comment |Â
up vote
8
down vote
accepted
up vote
8
down vote
accepted
Using the substitution $u=left( 1-x^a right)^frac1a$
$$I=int_0^1left( left( 1-x^a right)^frac1a-x right)^2dx=int_0^1u^a-1left( 1-u^a right)^frac1a-1left( u-left( 1-u^a right)^frac1a right)^2du$$
Since both $x and u$ are dummy variables
$$beginalign
& I=frac12int_0^1left( left( 1-x^a right)^frac1a-x right)^2+x^a-1left( 1-x^a right)^frac1a-1left( x-left( 1-x^a right)^frac1a right)^2dx \
& quad =frac12int_0^1left( left( 1-x^a right)^frac1a-x right)^2left( 1+x^a-1left( 1-x^a right)^frac1a-1 right)dx \
& quad =frac12int_0^1-frac13fracddxleft( left( 1-x^a right)^frac1a-x right)^3dx \
& quad =frac13 \
endalign$$
Using the substitution $u=left( 1-x^a right)^frac1a$
$$I=int_0^1left( left( 1-x^a right)^frac1a-x right)^2dx=int_0^1u^a-1left( 1-u^a right)^frac1a-1left( u-left( 1-u^a right)^frac1a right)^2du$$
Since both $x and u$ are dummy variables
$$beginalign
& I=frac12int_0^1left( left( 1-x^a right)^frac1a-x right)^2+x^a-1left( 1-x^a right)^frac1a-1left( x-left( 1-x^a right)^frac1a right)^2dx \
& quad =frac12int_0^1left( left( 1-x^a right)^frac1a-x right)^2left( 1+x^a-1left( 1-x^a right)^frac1a-1 right)dx \
& quad =frac12int_0^1-frac13fracddxleft( left( 1-x^a right)^frac1a-x right)^3dx \
& quad =frac13 \
endalign$$
answered Jul 16 at 15:23
Vincent Law
1,467212
1,467212
add a comment |Â
add a comment |Â
up vote
6
down vote
Hint. By the change of variable
$$
u=x^a,qquad x=u^1/a,qquad dx=frac1au^1/a-1du,
$$ one gets
$$
I=int_0^1left( left( 1-x^a right)^frac1a-x right)^2dx=frac1aint_0^1left( left( 1-uright)^frac1a-u^1/a right)^2u^1/a-1du
$$ then by expanding the square one is led to apply the standard Euler beta evaluation:
$$
int_0^1(1-u)^s-1 u^t-1,du = fracGamma(s)Gamma(t)Gamma(s+t),quad operatornameRe(s)>0,,operatornameRe(t)>0.
$$
add a comment |Â
up vote
6
down vote
Hint. By the change of variable
$$
u=x^a,qquad x=u^1/a,qquad dx=frac1au^1/a-1du,
$$ one gets
$$
I=int_0^1left( left( 1-x^a right)^frac1a-x right)^2dx=frac1aint_0^1left( left( 1-uright)^frac1a-u^1/a right)^2u^1/a-1du
$$ then by expanding the square one is led to apply the standard Euler beta evaluation:
$$
int_0^1(1-u)^s-1 u^t-1,du = fracGamma(s)Gamma(t)Gamma(s+t),quad operatornameRe(s)>0,,operatornameRe(t)>0.
$$
add a comment |Â
up vote
6
down vote
up vote
6
down vote
Hint. By the change of variable
$$
u=x^a,qquad x=u^1/a,qquad dx=frac1au^1/a-1du,
$$ one gets
$$
I=int_0^1left( left( 1-x^a right)^frac1a-x right)^2dx=frac1aint_0^1left( left( 1-uright)^frac1a-u^1/a right)^2u^1/a-1du
$$ then by expanding the square one is led to apply the standard Euler beta evaluation:
$$
int_0^1(1-u)^s-1 u^t-1,du = fracGamma(s)Gamma(t)Gamma(s+t),quad operatornameRe(s)>0,,operatornameRe(t)>0.
$$
Hint. By the change of variable
$$
u=x^a,qquad x=u^1/a,qquad dx=frac1au^1/a-1du,
$$ one gets
$$
I=int_0^1left( left( 1-x^a right)^frac1a-x right)^2dx=frac1aint_0^1left( left( 1-uright)^frac1a-u^1/a right)^2u^1/a-1du
$$ then by expanding the square one is led to apply the standard Euler beta evaluation:
$$
int_0^1(1-u)^s-1 u^t-1,du = fracGamma(s)Gamma(t)Gamma(s+t),quad operatornameRe(s)>0,,operatornameRe(t)>0.
$$
answered Jul 16 at 15:14
Olivier Oloa
106k17173292
106k17173292
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2853489%2ftricky-integral-involving-radicals%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
1
How about $u=x^a$?
â Chris2018
Jul 16 at 15:06
I am not sure let me try it
â user577488
Jul 16 at 15:09