Anyone to solve $ int_0^infty Big[ (k+1) + (n-k-1) e^alpha x Big] ^-2 alpha x e^alpha x dx $
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
I'm trying to solve the following formula, but my calculus is quite unhandsome.
$$
int_0^infty Big[ (k+1) + (n-k-1) e^alpha x Big] ^-2 alpha x e^alpha x dx
$$
I tried:
$$
int_0^infty Big[ (k+1) + (n-k-1) e^alpha x Big] ^-2 alpha x e^alpha x dx = int_0^infty Big[ (k+1) + (n-k-1) e^y Big] ^-2 (y/alpha) e^y dy
$$
And somewhat felt that it looks related to logistic function.
Can anybody give some hints?
calculus integration definite-integrals
add a comment |Â
up vote
2
down vote
favorite
I'm trying to solve the following formula, but my calculus is quite unhandsome.
$$
int_0^infty Big[ (k+1) + (n-k-1) e^alpha x Big] ^-2 alpha x e^alpha x dx
$$
I tried:
$$
int_0^infty Big[ (k+1) + (n-k-1) e^alpha x Big] ^-2 alpha x e^alpha x dx = int_0^infty Big[ (k+1) + (n-k-1) e^y Big] ^-2 (y/alpha) e^y dy
$$
And somewhat felt that it looks related to logistic function.
Can anybody give some hints?
calculus integration definite-integrals
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
I'm trying to solve the following formula, but my calculus is quite unhandsome.
$$
int_0^infty Big[ (k+1) + (n-k-1) e^alpha x Big] ^-2 alpha x e^alpha x dx
$$
I tried:
$$
int_0^infty Big[ (k+1) + (n-k-1) e^alpha x Big] ^-2 alpha x e^alpha x dx = int_0^infty Big[ (k+1) + (n-k-1) e^y Big] ^-2 (y/alpha) e^y dy
$$
And somewhat felt that it looks related to logistic function.
Can anybody give some hints?
calculus integration definite-integrals
I'm trying to solve the following formula, but my calculus is quite unhandsome.
$$
int_0^infty Big[ (k+1) + (n-k-1) e^alpha x Big] ^-2 alpha x e^alpha x dx
$$
I tried:
$$
int_0^infty Big[ (k+1) + (n-k-1) e^alpha x Big] ^-2 alpha x e^alpha x dx = int_0^infty Big[ (k+1) + (n-k-1) e^y Big] ^-2 (y/alpha) e^y dy
$$
And somewhat felt that it looks related to logistic function.
Can anybody give some hints?
calculus integration definite-integrals
edited Jul 17 at 18:31


Nosrati
19.8k41644
19.8k41644
asked Jul 17 at 12:31
moreblue
1738
1738
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
1
down vote
With observing
$$dfracddalphaleft(dfrac1(k+1)+(n-k-1)e^alpha xright)=dfrac-(n-k-1)xe^alpha xleft((k+1)+(n-k-1)e^alpha xright)^2$$
then the desire integral is
beginalign
I
&=dfracalpha-(n-k-1)int_0^inftydfrac-(n-k-1)xe^alpha xleft((k+1)+(n-k-1)e^alpha xright)^2dx\
&=dfracalpha-(n-k-1)dfracddalphaint_0^inftydfrac1(k+1)+(n-k-1)e^alpha xdx\
&=dfracalpha-(n-k-1)dfracddalphaint_0^inftydfrace^-alpha x(k+1)e^-alpha x+(n-k-1)dx\
&=dfrac1-alpha(k+1)(n-k-1)lndfracn-k-1nendalign
add a comment |Â
up vote
1
down vote
Well, we have (assuming that the integral exists):
$$mathcalI_spacetextnleft(textk,alpharight):=int_0^inftyfracalphacdot xcdotexpleft(alphacdot xright)left(1+textk+expleft(alphacdot xright)cdotleft(textn-textk-1right)right)^2spacetextdxtag1$$
Now, first of all let:
 1. $$beta_1:=1+textktag2$$
 2. $$beta_2:=textn-textk-1tag3$$
So, we can rewrite equation $left(1right)$ as follows:
$$mathcalI_spacetextnleft(textk,alpharight)=int_0^inftyfracalphacdot xcdotexpleft(alphacdot xright)left(beta_1+expleft(alphacdot xright)cdotbeta_2right)^2spacetextdx=alphacdotint_0^inftyfracxcdotexpleft(alphacdot xright)left(beta_1+expleft(alphacdot xright)cdotbeta_2right)^2spacetextdxtag4$$
Now, substitute $textu:=expleft(alphacdot xright)$, so we get:
$$mathcalI_spacetextnleft(textk,alpharight)=alphacdotfrac1alpha^2cdotlim_textptoinftyint_1^expleft(alphacdottextpright)fraclnleft(texturight)left(beta_1+textucdotbeta_2right)^2spacetextdtextutag5$$
Using IBP:
$$mathcalI_spacetextnleft(textk,alpharight)=frac1alphacdotbeta_2cdotlefttextZ+lim_textptoinftyint_1^expleft(alphacdottextpright)frac1textucdotleft(beta_1+textucdotbeta_2right)spacetextdtexturighttag6$$
Where:
$$textZ:=lim_textptoinftyleft[-fraclnleft(texturight)beta_1+textucdotbeta_2right]_1^expleft(alphacdottextpright)tag7$$
Assuming that $alphainmathbbR$, we can write:
$$textZ=-lim_textptoinftyfracalphacdottextpbeta_1+expleft(alphacdottextpright)cdotbeta_2=0tag8$$
So, we can rewrite equation $left(6right)$ as follows:
$$mathcalI_spacetextnleft(textk,alpharight)=frac1alphacdotbeta_2lim_textptoinftyint_1^expleft(alphacdottextpright)frac1textucdotleft(beta_1+textucdotbeta_2right)spacetextdtextu=$$
$$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftyleft[lnleft|fractextubeta_1cdotleft(beta_1+textucdotbeta_2right)right|right]_1^expleft(alphacdottextpright)=$$
$$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftyleftfracexpleft(alphacdottextpright)beta_1cdotleft(beta_1+expleft(alphacdottextpright)cdotbeta_2right)right=$$
$$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftylnleft|fracleft(beta_1+beta_2right)cdotexpleft(alphacdottextpright)beta_1+expleft(alphacdottextpright)cdotbeta_2right|tag9$$
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
With observing
$$dfracddalphaleft(dfrac1(k+1)+(n-k-1)e^alpha xright)=dfrac-(n-k-1)xe^alpha xleft((k+1)+(n-k-1)e^alpha xright)^2$$
then the desire integral is
beginalign
I
&=dfracalpha-(n-k-1)int_0^inftydfrac-(n-k-1)xe^alpha xleft((k+1)+(n-k-1)e^alpha xright)^2dx\
&=dfracalpha-(n-k-1)dfracddalphaint_0^inftydfrac1(k+1)+(n-k-1)e^alpha xdx\
&=dfracalpha-(n-k-1)dfracddalphaint_0^inftydfrace^-alpha x(k+1)e^-alpha x+(n-k-1)dx\
&=dfrac1-alpha(k+1)(n-k-1)lndfracn-k-1nendalign
add a comment |Â
up vote
1
down vote
With observing
$$dfracddalphaleft(dfrac1(k+1)+(n-k-1)e^alpha xright)=dfrac-(n-k-1)xe^alpha xleft((k+1)+(n-k-1)e^alpha xright)^2$$
then the desire integral is
beginalign
I
&=dfracalpha-(n-k-1)int_0^inftydfrac-(n-k-1)xe^alpha xleft((k+1)+(n-k-1)e^alpha xright)^2dx\
&=dfracalpha-(n-k-1)dfracddalphaint_0^inftydfrac1(k+1)+(n-k-1)e^alpha xdx\
&=dfracalpha-(n-k-1)dfracddalphaint_0^inftydfrace^-alpha x(k+1)e^-alpha x+(n-k-1)dx\
&=dfrac1-alpha(k+1)(n-k-1)lndfracn-k-1nendalign
add a comment |Â
up vote
1
down vote
up vote
1
down vote
With observing
$$dfracddalphaleft(dfrac1(k+1)+(n-k-1)e^alpha xright)=dfrac-(n-k-1)xe^alpha xleft((k+1)+(n-k-1)e^alpha xright)^2$$
then the desire integral is
beginalign
I
&=dfracalpha-(n-k-1)int_0^inftydfrac-(n-k-1)xe^alpha xleft((k+1)+(n-k-1)e^alpha xright)^2dx\
&=dfracalpha-(n-k-1)dfracddalphaint_0^inftydfrac1(k+1)+(n-k-1)e^alpha xdx\
&=dfracalpha-(n-k-1)dfracddalphaint_0^inftydfrace^-alpha x(k+1)e^-alpha x+(n-k-1)dx\
&=dfrac1-alpha(k+1)(n-k-1)lndfracn-k-1nendalign
With observing
$$dfracddalphaleft(dfrac1(k+1)+(n-k-1)e^alpha xright)=dfrac-(n-k-1)xe^alpha xleft((k+1)+(n-k-1)e^alpha xright)^2$$
then the desire integral is
beginalign
I
&=dfracalpha-(n-k-1)int_0^inftydfrac-(n-k-1)xe^alpha xleft((k+1)+(n-k-1)e^alpha xright)^2dx\
&=dfracalpha-(n-k-1)dfracddalphaint_0^inftydfrac1(k+1)+(n-k-1)e^alpha xdx\
&=dfracalpha-(n-k-1)dfracddalphaint_0^inftydfrace^-alpha x(k+1)e^-alpha x+(n-k-1)dx\
&=dfrac1-alpha(k+1)(n-k-1)lndfracn-k-1nendalign
edited Jul 17 at 13:34
answered Jul 17 at 12:59


Nosrati
19.8k41644
19.8k41644
add a comment |Â
add a comment |Â
up vote
1
down vote
Well, we have (assuming that the integral exists):
$$mathcalI_spacetextnleft(textk,alpharight):=int_0^inftyfracalphacdot xcdotexpleft(alphacdot xright)left(1+textk+expleft(alphacdot xright)cdotleft(textn-textk-1right)right)^2spacetextdxtag1$$
Now, first of all let:
 1. $$beta_1:=1+textktag2$$
 2. $$beta_2:=textn-textk-1tag3$$
So, we can rewrite equation $left(1right)$ as follows:
$$mathcalI_spacetextnleft(textk,alpharight)=int_0^inftyfracalphacdot xcdotexpleft(alphacdot xright)left(beta_1+expleft(alphacdot xright)cdotbeta_2right)^2spacetextdx=alphacdotint_0^inftyfracxcdotexpleft(alphacdot xright)left(beta_1+expleft(alphacdot xright)cdotbeta_2right)^2spacetextdxtag4$$
Now, substitute $textu:=expleft(alphacdot xright)$, so we get:
$$mathcalI_spacetextnleft(textk,alpharight)=alphacdotfrac1alpha^2cdotlim_textptoinftyint_1^expleft(alphacdottextpright)fraclnleft(texturight)left(beta_1+textucdotbeta_2right)^2spacetextdtextutag5$$
Using IBP:
$$mathcalI_spacetextnleft(textk,alpharight)=frac1alphacdotbeta_2cdotlefttextZ+lim_textptoinftyint_1^expleft(alphacdottextpright)frac1textucdotleft(beta_1+textucdotbeta_2right)spacetextdtexturighttag6$$
Where:
$$textZ:=lim_textptoinftyleft[-fraclnleft(texturight)beta_1+textucdotbeta_2right]_1^expleft(alphacdottextpright)tag7$$
Assuming that $alphainmathbbR$, we can write:
$$textZ=-lim_textptoinftyfracalphacdottextpbeta_1+expleft(alphacdottextpright)cdotbeta_2=0tag8$$
So, we can rewrite equation $left(6right)$ as follows:
$$mathcalI_spacetextnleft(textk,alpharight)=frac1alphacdotbeta_2lim_textptoinftyint_1^expleft(alphacdottextpright)frac1textucdotleft(beta_1+textucdotbeta_2right)spacetextdtextu=$$
$$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftyleft[lnleft|fractextubeta_1cdotleft(beta_1+textucdotbeta_2right)right|right]_1^expleft(alphacdottextpright)=$$
$$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftyleftfracexpleft(alphacdottextpright)beta_1cdotleft(beta_1+expleft(alphacdottextpright)cdotbeta_2right)right=$$
$$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftylnleft|fracleft(beta_1+beta_2right)cdotexpleft(alphacdottextpright)beta_1+expleft(alphacdottextpright)cdotbeta_2right|tag9$$
add a comment |Â
up vote
1
down vote
Well, we have (assuming that the integral exists):
$$mathcalI_spacetextnleft(textk,alpharight):=int_0^inftyfracalphacdot xcdotexpleft(alphacdot xright)left(1+textk+expleft(alphacdot xright)cdotleft(textn-textk-1right)right)^2spacetextdxtag1$$
Now, first of all let:
 1. $$beta_1:=1+textktag2$$
 2. $$beta_2:=textn-textk-1tag3$$
So, we can rewrite equation $left(1right)$ as follows:
$$mathcalI_spacetextnleft(textk,alpharight)=int_0^inftyfracalphacdot xcdotexpleft(alphacdot xright)left(beta_1+expleft(alphacdot xright)cdotbeta_2right)^2spacetextdx=alphacdotint_0^inftyfracxcdotexpleft(alphacdot xright)left(beta_1+expleft(alphacdot xright)cdotbeta_2right)^2spacetextdxtag4$$
Now, substitute $textu:=expleft(alphacdot xright)$, so we get:
$$mathcalI_spacetextnleft(textk,alpharight)=alphacdotfrac1alpha^2cdotlim_textptoinftyint_1^expleft(alphacdottextpright)fraclnleft(texturight)left(beta_1+textucdotbeta_2right)^2spacetextdtextutag5$$
Using IBP:
$$mathcalI_spacetextnleft(textk,alpharight)=frac1alphacdotbeta_2cdotlefttextZ+lim_textptoinftyint_1^expleft(alphacdottextpright)frac1textucdotleft(beta_1+textucdotbeta_2right)spacetextdtexturighttag6$$
Where:
$$textZ:=lim_textptoinftyleft[-fraclnleft(texturight)beta_1+textucdotbeta_2right]_1^expleft(alphacdottextpright)tag7$$
Assuming that $alphainmathbbR$, we can write:
$$textZ=-lim_textptoinftyfracalphacdottextpbeta_1+expleft(alphacdottextpright)cdotbeta_2=0tag8$$
So, we can rewrite equation $left(6right)$ as follows:
$$mathcalI_spacetextnleft(textk,alpharight)=frac1alphacdotbeta_2lim_textptoinftyint_1^expleft(alphacdottextpright)frac1textucdotleft(beta_1+textucdotbeta_2right)spacetextdtextu=$$
$$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftyleft[lnleft|fractextubeta_1cdotleft(beta_1+textucdotbeta_2right)right|right]_1^expleft(alphacdottextpright)=$$
$$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftyleftfracexpleft(alphacdottextpright)beta_1cdotleft(beta_1+expleft(alphacdottextpright)cdotbeta_2right)right=$$
$$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftylnleft|fracleft(beta_1+beta_2right)cdotexpleft(alphacdottextpright)beta_1+expleft(alphacdottextpright)cdotbeta_2right|tag9$$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Well, we have (assuming that the integral exists):
$$mathcalI_spacetextnleft(textk,alpharight):=int_0^inftyfracalphacdot xcdotexpleft(alphacdot xright)left(1+textk+expleft(alphacdot xright)cdotleft(textn-textk-1right)right)^2spacetextdxtag1$$
Now, first of all let:
 1. $$beta_1:=1+textktag2$$
 2. $$beta_2:=textn-textk-1tag3$$
So, we can rewrite equation $left(1right)$ as follows:
$$mathcalI_spacetextnleft(textk,alpharight)=int_0^inftyfracalphacdot xcdotexpleft(alphacdot xright)left(beta_1+expleft(alphacdot xright)cdotbeta_2right)^2spacetextdx=alphacdotint_0^inftyfracxcdotexpleft(alphacdot xright)left(beta_1+expleft(alphacdot xright)cdotbeta_2right)^2spacetextdxtag4$$
Now, substitute $textu:=expleft(alphacdot xright)$, so we get:
$$mathcalI_spacetextnleft(textk,alpharight)=alphacdotfrac1alpha^2cdotlim_textptoinftyint_1^expleft(alphacdottextpright)fraclnleft(texturight)left(beta_1+textucdotbeta_2right)^2spacetextdtextutag5$$
Using IBP:
$$mathcalI_spacetextnleft(textk,alpharight)=frac1alphacdotbeta_2cdotlefttextZ+lim_textptoinftyint_1^expleft(alphacdottextpright)frac1textucdotleft(beta_1+textucdotbeta_2right)spacetextdtexturighttag6$$
Where:
$$textZ:=lim_textptoinftyleft[-fraclnleft(texturight)beta_1+textucdotbeta_2right]_1^expleft(alphacdottextpright)tag7$$
Assuming that $alphainmathbbR$, we can write:
$$textZ=-lim_textptoinftyfracalphacdottextpbeta_1+expleft(alphacdottextpright)cdotbeta_2=0tag8$$
So, we can rewrite equation $left(6right)$ as follows:
$$mathcalI_spacetextnleft(textk,alpharight)=frac1alphacdotbeta_2lim_textptoinftyint_1^expleft(alphacdottextpright)frac1textucdotleft(beta_1+textucdotbeta_2right)spacetextdtextu=$$
$$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftyleft[lnleft|fractextubeta_1cdotleft(beta_1+textucdotbeta_2right)right|right]_1^expleft(alphacdottextpright)=$$
$$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftyleftfracexpleft(alphacdottextpright)beta_1cdotleft(beta_1+expleft(alphacdottextpright)cdotbeta_2right)right=$$
$$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftylnleft|fracleft(beta_1+beta_2right)cdotexpleft(alphacdottextpright)beta_1+expleft(alphacdottextpright)cdotbeta_2right|tag9$$
Well, we have (assuming that the integral exists):
$$mathcalI_spacetextnleft(textk,alpharight):=int_0^inftyfracalphacdot xcdotexpleft(alphacdot xright)left(1+textk+expleft(alphacdot xright)cdotleft(textn-textk-1right)right)^2spacetextdxtag1$$
Now, first of all let:
 1. $$beta_1:=1+textktag2$$
 2. $$beta_2:=textn-textk-1tag3$$
So, we can rewrite equation $left(1right)$ as follows:
$$mathcalI_spacetextnleft(textk,alpharight)=int_0^inftyfracalphacdot xcdotexpleft(alphacdot xright)left(beta_1+expleft(alphacdot xright)cdotbeta_2right)^2spacetextdx=alphacdotint_0^inftyfracxcdotexpleft(alphacdot xright)left(beta_1+expleft(alphacdot xright)cdotbeta_2right)^2spacetextdxtag4$$
Now, substitute $textu:=expleft(alphacdot xright)$, so we get:
$$mathcalI_spacetextnleft(textk,alpharight)=alphacdotfrac1alpha^2cdotlim_textptoinftyint_1^expleft(alphacdottextpright)fraclnleft(texturight)left(beta_1+textucdotbeta_2right)^2spacetextdtextutag5$$
Using IBP:
$$mathcalI_spacetextnleft(textk,alpharight)=frac1alphacdotbeta_2cdotlefttextZ+lim_textptoinftyint_1^expleft(alphacdottextpright)frac1textucdotleft(beta_1+textucdotbeta_2right)spacetextdtexturighttag6$$
Where:
$$textZ:=lim_textptoinftyleft[-fraclnleft(texturight)beta_1+textucdotbeta_2right]_1^expleft(alphacdottextpright)tag7$$
Assuming that $alphainmathbbR$, we can write:
$$textZ=-lim_textptoinftyfracalphacdottextpbeta_1+expleft(alphacdottextpright)cdotbeta_2=0tag8$$
So, we can rewrite equation $left(6right)$ as follows:
$$mathcalI_spacetextnleft(textk,alpharight)=frac1alphacdotbeta_2lim_textptoinftyint_1^expleft(alphacdottextpright)frac1textucdotleft(beta_1+textucdotbeta_2right)spacetextdtextu=$$
$$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftyleft[lnleft|fractextubeta_1cdotleft(beta_1+textucdotbeta_2right)right|right]_1^expleft(alphacdottextpright)=$$
$$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftyleftfracexpleft(alphacdottextpright)beta_1cdotleft(beta_1+expleft(alphacdottextpright)cdotbeta_2right)right=$$
$$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftylnleft|fracleft(beta_1+beta_2right)cdotexpleft(alphacdottextpright)beta_1+expleft(alphacdottextpright)cdotbeta_2right|tag9$$
edited Jul 17 at 13:36
answered Jul 17 at 13:04


Jan
21.6k31239
21.6k31239
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2854460%2fanyone-to-solve-int-0-infty-big-k1-n-k-1-e-alpha-x-big-2%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password