Anyone to solve $ int_0^infty Big[ (k+1) + (n-k-1) e^alpha x Big] ^-2 alpha x e^alpha x dx $

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite
1












I'm trying to solve the following formula, but my calculus is quite unhandsome.



$$
int_0^infty Big[ (k+1) + (n-k-1) e^alpha x Big] ^-2 alpha x e^alpha x dx
$$



I tried:



$$
int_0^infty Big[ (k+1) + (n-k-1) e^alpha x Big] ^-2 alpha x e^alpha x dx = int_0^infty Big[ (k+1) + (n-k-1) e^y Big] ^-2 (y/alpha) e^y dy
$$



And somewhat felt that it looks related to logistic function.



Can anybody give some hints?







share|cite|improve this question

























    up vote
    2
    down vote

    favorite
    1












    I'm trying to solve the following formula, but my calculus is quite unhandsome.



    $$
    int_0^infty Big[ (k+1) + (n-k-1) e^alpha x Big] ^-2 alpha x e^alpha x dx
    $$



    I tried:



    $$
    int_0^infty Big[ (k+1) + (n-k-1) e^alpha x Big] ^-2 alpha x e^alpha x dx = int_0^infty Big[ (k+1) + (n-k-1) e^y Big] ^-2 (y/alpha) e^y dy
    $$



    And somewhat felt that it looks related to logistic function.



    Can anybody give some hints?







    share|cite|improve this question























      up vote
      2
      down vote

      favorite
      1









      up vote
      2
      down vote

      favorite
      1






      1





      I'm trying to solve the following formula, but my calculus is quite unhandsome.



      $$
      int_0^infty Big[ (k+1) + (n-k-1) e^alpha x Big] ^-2 alpha x e^alpha x dx
      $$



      I tried:



      $$
      int_0^infty Big[ (k+1) + (n-k-1) e^alpha x Big] ^-2 alpha x e^alpha x dx = int_0^infty Big[ (k+1) + (n-k-1) e^y Big] ^-2 (y/alpha) e^y dy
      $$



      And somewhat felt that it looks related to logistic function.



      Can anybody give some hints?







      share|cite|improve this question













      I'm trying to solve the following formula, but my calculus is quite unhandsome.



      $$
      int_0^infty Big[ (k+1) + (n-k-1) e^alpha x Big] ^-2 alpha x e^alpha x dx
      $$



      I tried:



      $$
      int_0^infty Big[ (k+1) + (n-k-1) e^alpha x Big] ^-2 alpha x e^alpha x dx = int_0^infty Big[ (k+1) + (n-k-1) e^y Big] ^-2 (y/alpha) e^y dy
      $$



      And somewhat felt that it looks related to logistic function.



      Can anybody give some hints?









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Jul 17 at 18:31









      Nosrati

      19.8k41644




      19.8k41644









      asked Jul 17 at 12:31









      moreblue

      1738




      1738




















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          1
          down vote













          With observing
          $$dfracddalphaleft(dfrac1(k+1)+(n-k-1)e^alpha xright)=dfrac-(n-k-1)xe^alpha xleft((k+1)+(n-k-1)e^alpha xright)^2$$
          then the desire integral is
          beginalign
          I
          &=dfracalpha-(n-k-1)int_0^inftydfrac-(n-k-1)xe^alpha xleft((k+1)+(n-k-1)e^alpha xright)^2dx\
          &=dfracalpha-(n-k-1)dfracddalphaint_0^inftydfrac1(k+1)+(n-k-1)e^alpha xdx\
          &=dfracalpha-(n-k-1)dfracddalphaint_0^inftydfrace^-alpha x(k+1)e^-alpha x+(n-k-1)dx\
          &=dfrac1-alpha(k+1)(n-k-1)lndfracn-k-1nendalign






          share|cite|improve this answer






























            up vote
            1
            down vote













            Well, we have (assuming that the integral exists):



            $$mathcalI_spacetextnleft(textk,alpharight):=int_0^inftyfracalphacdot xcdotexpleft(alphacdot xright)left(1+textk+expleft(alphacdot xright)cdotleft(textn-textk-1right)right)^2spacetextdxtag1$$



            Now, first of all let:



             1. $$beta_1:=1+textktag2$$
             2. $$beta_2:=textn-textk-1tag3$$



            So, we can rewrite equation $left(1right)$ as follows:



            $$mathcalI_spacetextnleft(textk,alpharight)=int_0^inftyfracalphacdot xcdotexpleft(alphacdot xright)left(beta_1+expleft(alphacdot xright)cdotbeta_2right)^2spacetextdx=alphacdotint_0^inftyfracxcdotexpleft(alphacdot xright)left(beta_1+expleft(alphacdot xright)cdotbeta_2right)^2spacetextdxtag4$$



            Now, substitute $textu:=expleft(alphacdot xright)$, so we get:



            $$mathcalI_spacetextnleft(textk,alpharight)=alphacdotfrac1alpha^2cdotlim_textptoinftyint_1^expleft(alphacdottextpright)fraclnleft(texturight)left(beta_1+textucdotbeta_2right)^2spacetextdtextutag5$$



            Using IBP:



            $$mathcalI_spacetextnleft(textk,alpharight)=frac1alphacdotbeta_2cdotlefttextZ+lim_textptoinftyint_1^expleft(alphacdottextpright)frac1textucdotleft(beta_1+textucdotbeta_2right)spacetextdtexturighttag6$$



            Where:



            $$textZ:=lim_textptoinftyleft[-fraclnleft(texturight)beta_1+textucdotbeta_2right]_1^expleft(alphacdottextpright)tag7$$



            Assuming that $alphainmathbbR$, we can write:



            $$textZ=-lim_textptoinftyfracalphacdottextpbeta_1+expleft(alphacdottextpright)cdotbeta_2=0tag8$$



            So, we can rewrite equation $left(6right)$ as follows:



            $$mathcalI_spacetextnleft(textk,alpharight)=frac1alphacdotbeta_2lim_textptoinftyint_1^expleft(alphacdottextpright)frac1textucdotleft(beta_1+textucdotbeta_2right)spacetextdtextu=$$
            $$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftyleft[lnleft|fractextubeta_1cdotleft(beta_1+textucdotbeta_2right)right|right]_1^expleft(alphacdottextpright)=$$
            $$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftyleftfracexpleft(alphacdottextpright)beta_1cdotleft(beta_1+expleft(alphacdottextpright)cdotbeta_2right)right=$$
            $$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftylnleft|fracleft(beta_1+beta_2right)cdotexpleft(alphacdottextpright)beta_1+expleft(alphacdottextpright)cdotbeta_2right|tag9$$






            share|cite|improve this answer























              Your Answer




              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: false,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );








               

              draft saved


              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2854460%2fanyone-to-solve-int-0-infty-big-k1-n-k-1-e-alpha-x-big-2%23new-answer', 'question_page');

              );

              Post as a guest






























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              1
              down vote













              With observing
              $$dfracddalphaleft(dfrac1(k+1)+(n-k-1)e^alpha xright)=dfrac-(n-k-1)xe^alpha xleft((k+1)+(n-k-1)e^alpha xright)^2$$
              then the desire integral is
              beginalign
              I
              &=dfracalpha-(n-k-1)int_0^inftydfrac-(n-k-1)xe^alpha xleft((k+1)+(n-k-1)e^alpha xright)^2dx\
              &=dfracalpha-(n-k-1)dfracddalphaint_0^inftydfrac1(k+1)+(n-k-1)e^alpha xdx\
              &=dfracalpha-(n-k-1)dfracddalphaint_0^inftydfrace^-alpha x(k+1)e^-alpha x+(n-k-1)dx\
              &=dfrac1-alpha(k+1)(n-k-1)lndfracn-k-1nendalign






              share|cite|improve this answer



























                up vote
                1
                down vote













                With observing
                $$dfracddalphaleft(dfrac1(k+1)+(n-k-1)e^alpha xright)=dfrac-(n-k-1)xe^alpha xleft((k+1)+(n-k-1)e^alpha xright)^2$$
                then the desire integral is
                beginalign
                I
                &=dfracalpha-(n-k-1)int_0^inftydfrac-(n-k-1)xe^alpha xleft((k+1)+(n-k-1)e^alpha xright)^2dx\
                &=dfracalpha-(n-k-1)dfracddalphaint_0^inftydfrac1(k+1)+(n-k-1)e^alpha xdx\
                &=dfracalpha-(n-k-1)dfracddalphaint_0^inftydfrace^-alpha x(k+1)e^-alpha x+(n-k-1)dx\
                &=dfrac1-alpha(k+1)(n-k-1)lndfracn-k-1nendalign






                share|cite|improve this answer

























                  up vote
                  1
                  down vote










                  up vote
                  1
                  down vote









                  With observing
                  $$dfracddalphaleft(dfrac1(k+1)+(n-k-1)e^alpha xright)=dfrac-(n-k-1)xe^alpha xleft((k+1)+(n-k-1)e^alpha xright)^2$$
                  then the desire integral is
                  beginalign
                  I
                  &=dfracalpha-(n-k-1)int_0^inftydfrac-(n-k-1)xe^alpha xleft((k+1)+(n-k-1)e^alpha xright)^2dx\
                  &=dfracalpha-(n-k-1)dfracddalphaint_0^inftydfrac1(k+1)+(n-k-1)e^alpha xdx\
                  &=dfracalpha-(n-k-1)dfracddalphaint_0^inftydfrace^-alpha x(k+1)e^-alpha x+(n-k-1)dx\
                  &=dfrac1-alpha(k+1)(n-k-1)lndfracn-k-1nendalign






                  share|cite|improve this answer















                  With observing
                  $$dfracddalphaleft(dfrac1(k+1)+(n-k-1)e^alpha xright)=dfrac-(n-k-1)xe^alpha xleft((k+1)+(n-k-1)e^alpha xright)^2$$
                  then the desire integral is
                  beginalign
                  I
                  &=dfracalpha-(n-k-1)int_0^inftydfrac-(n-k-1)xe^alpha xleft((k+1)+(n-k-1)e^alpha xright)^2dx\
                  &=dfracalpha-(n-k-1)dfracddalphaint_0^inftydfrac1(k+1)+(n-k-1)e^alpha xdx\
                  &=dfracalpha-(n-k-1)dfracddalphaint_0^inftydfrace^-alpha x(k+1)e^-alpha x+(n-k-1)dx\
                  &=dfrac1-alpha(k+1)(n-k-1)lndfracn-k-1nendalign







                  share|cite|improve this answer















                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jul 17 at 13:34


























                  answered Jul 17 at 12:59









                  Nosrati

                  19.8k41644




                  19.8k41644




















                      up vote
                      1
                      down vote













                      Well, we have (assuming that the integral exists):



                      $$mathcalI_spacetextnleft(textk,alpharight):=int_0^inftyfracalphacdot xcdotexpleft(alphacdot xright)left(1+textk+expleft(alphacdot xright)cdotleft(textn-textk-1right)right)^2spacetextdxtag1$$



                      Now, first of all let:



                       1. $$beta_1:=1+textktag2$$
                       2. $$beta_2:=textn-textk-1tag3$$



                      So, we can rewrite equation $left(1right)$ as follows:



                      $$mathcalI_spacetextnleft(textk,alpharight)=int_0^inftyfracalphacdot xcdotexpleft(alphacdot xright)left(beta_1+expleft(alphacdot xright)cdotbeta_2right)^2spacetextdx=alphacdotint_0^inftyfracxcdotexpleft(alphacdot xright)left(beta_1+expleft(alphacdot xright)cdotbeta_2right)^2spacetextdxtag4$$



                      Now, substitute $textu:=expleft(alphacdot xright)$, so we get:



                      $$mathcalI_spacetextnleft(textk,alpharight)=alphacdotfrac1alpha^2cdotlim_textptoinftyint_1^expleft(alphacdottextpright)fraclnleft(texturight)left(beta_1+textucdotbeta_2right)^2spacetextdtextutag5$$



                      Using IBP:



                      $$mathcalI_spacetextnleft(textk,alpharight)=frac1alphacdotbeta_2cdotlefttextZ+lim_textptoinftyint_1^expleft(alphacdottextpright)frac1textucdotleft(beta_1+textucdotbeta_2right)spacetextdtexturighttag6$$



                      Where:



                      $$textZ:=lim_textptoinftyleft[-fraclnleft(texturight)beta_1+textucdotbeta_2right]_1^expleft(alphacdottextpright)tag7$$



                      Assuming that $alphainmathbbR$, we can write:



                      $$textZ=-lim_textptoinftyfracalphacdottextpbeta_1+expleft(alphacdottextpright)cdotbeta_2=0tag8$$



                      So, we can rewrite equation $left(6right)$ as follows:



                      $$mathcalI_spacetextnleft(textk,alpharight)=frac1alphacdotbeta_2lim_textptoinftyint_1^expleft(alphacdottextpright)frac1textucdotleft(beta_1+textucdotbeta_2right)spacetextdtextu=$$
                      $$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftyleft[lnleft|fractextubeta_1cdotleft(beta_1+textucdotbeta_2right)right|right]_1^expleft(alphacdottextpright)=$$
                      $$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftyleftfracexpleft(alphacdottextpright)beta_1cdotleft(beta_1+expleft(alphacdottextpright)cdotbeta_2right)right=$$
                      $$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftylnleft|fracleft(beta_1+beta_2right)cdotexpleft(alphacdottextpright)beta_1+expleft(alphacdottextpright)cdotbeta_2right|tag9$$






                      share|cite|improve this answer



























                        up vote
                        1
                        down vote













                        Well, we have (assuming that the integral exists):



                        $$mathcalI_spacetextnleft(textk,alpharight):=int_0^inftyfracalphacdot xcdotexpleft(alphacdot xright)left(1+textk+expleft(alphacdot xright)cdotleft(textn-textk-1right)right)^2spacetextdxtag1$$



                        Now, first of all let:



                         1. $$beta_1:=1+textktag2$$
                         2. $$beta_2:=textn-textk-1tag3$$



                        So, we can rewrite equation $left(1right)$ as follows:



                        $$mathcalI_spacetextnleft(textk,alpharight)=int_0^inftyfracalphacdot xcdotexpleft(alphacdot xright)left(beta_1+expleft(alphacdot xright)cdotbeta_2right)^2spacetextdx=alphacdotint_0^inftyfracxcdotexpleft(alphacdot xright)left(beta_1+expleft(alphacdot xright)cdotbeta_2right)^2spacetextdxtag4$$



                        Now, substitute $textu:=expleft(alphacdot xright)$, so we get:



                        $$mathcalI_spacetextnleft(textk,alpharight)=alphacdotfrac1alpha^2cdotlim_textptoinftyint_1^expleft(alphacdottextpright)fraclnleft(texturight)left(beta_1+textucdotbeta_2right)^2spacetextdtextutag5$$



                        Using IBP:



                        $$mathcalI_spacetextnleft(textk,alpharight)=frac1alphacdotbeta_2cdotlefttextZ+lim_textptoinftyint_1^expleft(alphacdottextpright)frac1textucdotleft(beta_1+textucdotbeta_2right)spacetextdtexturighttag6$$



                        Where:



                        $$textZ:=lim_textptoinftyleft[-fraclnleft(texturight)beta_1+textucdotbeta_2right]_1^expleft(alphacdottextpright)tag7$$



                        Assuming that $alphainmathbbR$, we can write:



                        $$textZ=-lim_textptoinftyfracalphacdottextpbeta_1+expleft(alphacdottextpright)cdotbeta_2=0tag8$$



                        So, we can rewrite equation $left(6right)$ as follows:



                        $$mathcalI_spacetextnleft(textk,alpharight)=frac1alphacdotbeta_2lim_textptoinftyint_1^expleft(alphacdottextpright)frac1textucdotleft(beta_1+textucdotbeta_2right)spacetextdtextu=$$
                        $$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftyleft[lnleft|fractextubeta_1cdotleft(beta_1+textucdotbeta_2right)right|right]_1^expleft(alphacdottextpright)=$$
                        $$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftyleftfracexpleft(alphacdottextpright)beta_1cdotleft(beta_1+expleft(alphacdottextpright)cdotbeta_2right)right=$$
                        $$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftylnleft|fracleft(beta_1+beta_2right)cdotexpleft(alphacdottextpright)beta_1+expleft(alphacdottextpright)cdotbeta_2right|tag9$$






                        share|cite|improve this answer

























                          up vote
                          1
                          down vote










                          up vote
                          1
                          down vote









                          Well, we have (assuming that the integral exists):



                          $$mathcalI_spacetextnleft(textk,alpharight):=int_0^inftyfracalphacdot xcdotexpleft(alphacdot xright)left(1+textk+expleft(alphacdot xright)cdotleft(textn-textk-1right)right)^2spacetextdxtag1$$



                          Now, first of all let:



                           1. $$beta_1:=1+textktag2$$
                           2. $$beta_2:=textn-textk-1tag3$$



                          So, we can rewrite equation $left(1right)$ as follows:



                          $$mathcalI_spacetextnleft(textk,alpharight)=int_0^inftyfracalphacdot xcdotexpleft(alphacdot xright)left(beta_1+expleft(alphacdot xright)cdotbeta_2right)^2spacetextdx=alphacdotint_0^inftyfracxcdotexpleft(alphacdot xright)left(beta_1+expleft(alphacdot xright)cdotbeta_2right)^2spacetextdxtag4$$



                          Now, substitute $textu:=expleft(alphacdot xright)$, so we get:



                          $$mathcalI_spacetextnleft(textk,alpharight)=alphacdotfrac1alpha^2cdotlim_textptoinftyint_1^expleft(alphacdottextpright)fraclnleft(texturight)left(beta_1+textucdotbeta_2right)^2spacetextdtextutag5$$



                          Using IBP:



                          $$mathcalI_spacetextnleft(textk,alpharight)=frac1alphacdotbeta_2cdotlefttextZ+lim_textptoinftyint_1^expleft(alphacdottextpright)frac1textucdotleft(beta_1+textucdotbeta_2right)spacetextdtexturighttag6$$



                          Where:



                          $$textZ:=lim_textptoinftyleft[-fraclnleft(texturight)beta_1+textucdotbeta_2right]_1^expleft(alphacdottextpright)tag7$$



                          Assuming that $alphainmathbbR$, we can write:



                          $$textZ=-lim_textptoinftyfracalphacdottextpbeta_1+expleft(alphacdottextpright)cdotbeta_2=0tag8$$



                          So, we can rewrite equation $left(6right)$ as follows:



                          $$mathcalI_spacetextnleft(textk,alpharight)=frac1alphacdotbeta_2lim_textptoinftyint_1^expleft(alphacdottextpright)frac1textucdotleft(beta_1+textucdotbeta_2right)spacetextdtextu=$$
                          $$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftyleft[lnleft|fractextubeta_1cdotleft(beta_1+textucdotbeta_2right)right|right]_1^expleft(alphacdottextpright)=$$
                          $$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftyleftfracexpleft(alphacdottextpright)beta_1cdotleft(beta_1+expleft(alphacdottextpright)cdotbeta_2right)right=$$
                          $$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftylnleft|fracleft(beta_1+beta_2right)cdotexpleft(alphacdottextpright)beta_1+expleft(alphacdottextpright)cdotbeta_2right|tag9$$






                          share|cite|improve this answer















                          Well, we have (assuming that the integral exists):



                          $$mathcalI_spacetextnleft(textk,alpharight):=int_0^inftyfracalphacdot xcdotexpleft(alphacdot xright)left(1+textk+expleft(alphacdot xright)cdotleft(textn-textk-1right)right)^2spacetextdxtag1$$



                          Now, first of all let:



                           1. $$beta_1:=1+textktag2$$
                           2. $$beta_2:=textn-textk-1tag3$$



                          So, we can rewrite equation $left(1right)$ as follows:



                          $$mathcalI_spacetextnleft(textk,alpharight)=int_0^inftyfracalphacdot xcdotexpleft(alphacdot xright)left(beta_1+expleft(alphacdot xright)cdotbeta_2right)^2spacetextdx=alphacdotint_0^inftyfracxcdotexpleft(alphacdot xright)left(beta_1+expleft(alphacdot xright)cdotbeta_2right)^2spacetextdxtag4$$



                          Now, substitute $textu:=expleft(alphacdot xright)$, so we get:



                          $$mathcalI_spacetextnleft(textk,alpharight)=alphacdotfrac1alpha^2cdotlim_textptoinftyint_1^expleft(alphacdottextpright)fraclnleft(texturight)left(beta_1+textucdotbeta_2right)^2spacetextdtextutag5$$



                          Using IBP:



                          $$mathcalI_spacetextnleft(textk,alpharight)=frac1alphacdotbeta_2cdotlefttextZ+lim_textptoinftyint_1^expleft(alphacdottextpright)frac1textucdotleft(beta_1+textucdotbeta_2right)spacetextdtexturighttag6$$



                          Where:



                          $$textZ:=lim_textptoinftyleft[-fraclnleft(texturight)beta_1+textucdotbeta_2right]_1^expleft(alphacdottextpright)tag7$$



                          Assuming that $alphainmathbbR$, we can write:



                          $$textZ=-lim_textptoinftyfracalphacdottextpbeta_1+expleft(alphacdottextpright)cdotbeta_2=0tag8$$



                          So, we can rewrite equation $left(6right)$ as follows:



                          $$mathcalI_spacetextnleft(textk,alpharight)=frac1alphacdotbeta_2lim_textptoinftyint_1^expleft(alphacdottextpright)frac1textucdotleft(beta_1+textucdotbeta_2right)spacetextdtextu=$$
                          $$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftyleft[lnleft|fractextubeta_1cdotleft(beta_1+textucdotbeta_2right)right|right]_1^expleft(alphacdottextpright)=$$
                          $$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftyleftfracexpleft(alphacdottextpright)beta_1cdotleft(beta_1+expleft(alphacdottextpright)cdotbeta_2right)right=$$
                          $$frac1alphacdotbeta_1cdotbeta_2cdotlim_textptoinftylnleft|fracleft(beta_1+beta_2right)cdotexpleft(alphacdottextpright)beta_1+expleft(alphacdottextpright)cdotbeta_2right|tag9$$







                          share|cite|improve this answer















                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Jul 17 at 13:36


























                          answered Jul 17 at 13:04









                          Jan

                          21.6k31239




                          21.6k31239






















                               

                              draft saved


                              draft discarded


























                               


                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2854460%2fanyone-to-solve-int-0-infty-big-k1-n-k-1-e-alpha-x-big-2%23new-answer', 'question_page');

                              );

                              Post as a guest













































































                              Comments

                              Popular posts from this blog

                              What is the equation of a 3D cone with generalised tilt?

                              Color the edges and diagonals of a regular polygon

                              Relationship between determinant of matrix and determinant of adjoint?