Can I change the limits in the Fourier transform definition of the Dirac delta function?
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
The Dirac delta function is often defined as
$$delta(x)=frac12piint_-infty^infty e^i p x dp$$
Is there a way in which
$$delta(x)=int_0^infty e^ipx dp$$
is also correct? For instance if $x$ or $p$ obey some condition.
fourier-transform dirac-delta
add a comment |Â
up vote
1
down vote
favorite
The Dirac delta function is often defined as
$$delta(x)=frac12piint_-infty^infty e^i p x dp$$
Is there a way in which
$$delta(x)=int_0^infty e^ipx dp$$
is also correct? For instance if $x$ or $p$ obey some condition.
fourier-transform dirac-delta
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
The Dirac delta function is often defined as
$$delta(x)=frac12piint_-infty^infty e^i p x dp$$
Is there a way in which
$$delta(x)=int_0^infty e^ipx dp$$
is also correct? For instance if $x$ or $p$ obey some condition.
fourier-transform dirac-delta
The Dirac delta function is often defined as
$$delta(x)=frac12piint_-infty^infty e^i p x dp$$
Is there a way in which
$$delta(x)=int_0^infty e^ipx dp$$
is also correct? For instance if $x$ or $p$ obey some condition.
fourier-transform dirac-delta
edited Jul 17 at 16:46
Davide Morgante
1,875220
1,875220
asked Jul 17 at 16:07
Andreu
62
62
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
2
down vote
Not exactly like that. Formally,
$$
delta(x)
= frac12piint_-infty^infty e^i p x , dp
= frac12pi left( int_-infty^0 e^i p x , dp + int_0^infty e^i p x , dp right) \
= frac12pi left( int_0^infty e^-i p x , dp + int_0^infty e^i p x , dp right) \
= frac12pi int_0^infty left( e^-i p x + e^i p x right) , dp \
= frac1pi int_0^infty cos(p x) , dp \
$$
add a comment |Â
up vote
0
down vote
No, you can't. The definition you're giving is the one arising from the Fourier transform. It can be easily proven: take $fin L^1(mathbbR)$ then $$f(x) = 1over2piint_-infty^inftye^ikxleft(int_-infty^inftye^-ikyf(y)dyright)dk$$ here you cannot interchange the integrals, but you can write $$f(x) = lim_Nrightarrowinfty1over2piint_-N^Ne^ikxleft(int_-infty^inftye^-ikyf(y)dyright)dktag1$$ By the properties that the Dirac delta should have, there is $$f(x)=int_-infty^inftydelta(y-x)f(y)dy$$ so from $(1)$ we get that $$delta_N(x) = 1over2pi int_-N^Ne^ikxdk = 1over2piint_-N^0 e^ikxdk+1over2piint_0^Ne^ikxdk = \
1over2piint_0^N e^-ikxdk+1over2piint_0^Ne^ikxdk = \
1over2piint_0^Ne^ikx+e^-ikx = 1overpiint_0^N cos(kx)dk = 1overpifracsin(Nx)x tag2$$ Does this definition of the delta, in the limit, follow the properties that should have? Yes, it does, mainly $$int_-infty^inftydelta_n(x)dx=1;;;;lim_Nrightarrowpminftydelta_n(x)=0$$ So we can define the delta function as the limit of the sequence $$delta(x) = lim_Nrightarrowinfty1overpifracsin(Nx)x = lim_Nrightarrowinfty 1over2pi int_-N^Ne^ikxdk$$ The Fourier representation of the delta function is as follows $$delta(x) = int_-infty^inftye^ikxdx$$ As you can see from equation $(2)$ the only integral of $int_0^Ne^ikxdk$ it's not enough to define a Dirac delta
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
Not exactly like that. Formally,
$$
delta(x)
= frac12piint_-infty^infty e^i p x , dp
= frac12pi left( int_-infty^0 e^i p x , dp + int_0^infty e^i p x , dp right) \
= frac12pi left( int_0^infty e^-i p x , dp + int_0^infty e^i p x , dp right) \
= frac12pi int_0^infty left( e^-i p x + e^i p x right) , dp \
= frac1pi int_0^infty cos(p x) , dp \
$$
add a comment |Â
up vote
2
down vote
Not exactly like that. Formally,
$$
delta(x)
= frac12piint_-infty^infty e^i p x , dp
= frac12pi left( int_-infty^0 e^i p x , dp + int_0^infty e^i p x , dp right) \
= frac12pi left( int_0^infty e^-i p x , dp + int_0^infty e^i p x , dp right) \
= frac12pi int_0^infty left( e^-i p x + e^i p x right) , dp \
= frac1pi int_0^infty cos(p x) , dp \
$$
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Not exactly like that. Formally,
$$
delta(x)
= frac12piint_-infty^infty e^i p x , dp
= frac12pi left( int_-infty^0 e^i p x , dp + int_0^infty e^i p x , dp right) \
= frac12pi left( int_0^infty e^-i p x , dp + int_0^infty e^i p x , dp right) \
= frac12pi int_0^infty left( e^-i p x + e^i p x right) , dp \
= frac1pi int_0^infty cos(p x) , dp \
$$
Not exactly like that. Formally,
$$
delta(x)
= frac12piint_-infty^infty e^i p x , dp
= frac12pi left( int_-infty^0 e^i p x , dp + int_0^infty e^i p x , dp right) \
= frac12pi left( int_0^infty e^-i p x , dp + int_0^infty e^i p x , dp right) \
= frac12pi int_0^infty left( e^-i p x + e^i p x right) , dp \
= frac1pi int_0^infty cos(p x) , dp \
$$
answered Jul 17 at 16:20
md2perpe
5,93011022
5,93011022
add a comment |Â
add a comment |Â
up vote
0
down vote
No, you can't. The definition you're giving is the one arising from the Fourier transform. It can be easily proven: take $fin L^1(mathbbR)$ then $$f(x) = 1over2piint_-infty^inftye^ikxleft(int_-infty^inftye^-ikyf(y)dyright)dk$$ here you cannot interchange the integrals, but you can write $$f(x) = lim_Nrightarrowinfty1over2piint_-N^Ne^ikxleft(int_-infty^inftye^-ikyf(y)dyright)dktag1$$ By the properties that the Dirac delta should have, there is $$f(x)=int_-infty^inftydelta(y-x)f(y)dy$$ so from $(1)$ we get that $$delta_N(x) = 1over2pi int_-N^Ne^ikxdk = 1over2piint_-N^0 e^ikxdk+1over2piint_0^Ne^ikxdk = \
1over2piint_0^N e^-ikxdk+1over2piint_0^Ne^ikxdk = \
1over2piint_0^Ne^ikx+e^-ikx = 1overpiint_0^N cos(kx)dk = 1overpifracsin(Nx)x tag2$$ Does this definition of the delta, in the limit, follow the properties that should have? Yes, it does, mainly $$int_-infty^inftydelta_n(x)dx=1;;;;lim_Nrightarrowpminftydelta_n(x)=0$$ So we can define the delta function as the limit of the sequence $$delta(x) = lim_Nrightarrowinfty1overpifracsin(Nx)x = lim_Nrightarrowinfty 1over2pi int_-N^Ne^ikxdk$$ The Fourier representation of the delta function is as follows $$delta(x) = int_-infty^inftye^ikxdx$$ As you can see from equation $(2)$ the only integral of $int_0^Ne^ikxdk$ it's not enough to define a Dirac delta
add a comment |Â
up vote
0
down vote
No, you can't. The definition you're giving is the one arising from the Fourier transform. It can be easily proven: take $fin L^1(mathbbR)$ then $$f(x) = 1over2piint_-infty^inftye^ikxleft(int_-infty^inftye^-ikyf(y)dyright)dk$$ here you cannot interchange the integrals, but you can write $$f(x) = lim_Nrightarrowinfty1over2piint_-N^Ne^ikxleft(int_-infty^inftye^-ikyf(y)dyright)dktag1$$ By the properties that the Dirac delta should have, there is $$f(x)=int_-infty^inftydelta(y-x)f(y)dy$$ so from $(1)$ we get that $$delta_N(x) = 1over2pi int_-N^Ne^ikxdk = 1over2piint_-N^0 e^ikxdk+1over2piint_0^Ne^ikxdk = \
1over2piint_0^N e^-ikxdk+1over2piint_0^Ne^ikxdk = \
1over2piint_0^Ne^ikx+e^-ikx = 1overpiint_0^N cos(kx)dk = 1overpifracsin(Nx)x tag2$$ Does this definition of the delta, in the limit, follow the properties that should have? Yes, it does, mainly $$int_-infty^inftydelta_n(x)dx=1;;;;lim_Nrightarrowpminftydelta_n(x)=0$$ So we can define the delta function as the limit of the sequence $$delta(x) = lim_Nrightarrowinfty1overpifracsin(Nx)x = lim_Nrightarrowinfty 1over2pi int_-N^Ne^ikxdk$$ The Fourier representation of the delta function is as follows $$delta(x) = int_-infty^inftye^ikxdx$$ As you can see from equation $(2)$ the only integral of $int_0^Ne^ikxdk$ it's not enough to define a Dirac delta
add a comment |Â
up vote
0
down vote
up vote
0
down vote
No, you can't. The definition you're giving is the one arising from the Fourier transform. It can be easily proven: take $fin L^1(mathbbR)$ then $$f(x) = 1over2piint_-infty^inftye^ikxleft(int_-infty^inftye^-ikyf(y)dyright)dk$$ here you cannot interchange the integrals, but you can write $$f(x) = lim_Nrightarrowinfty1over2piint_-N^Ne^ikxleft(int_-infty^inftye^-ikyf(y)dyright)dktag1$$ By the properties that the Dirac delta should have, there is $$f(x)=int_-infty^inftydelta(y-x)f(y)dy$$ so from $(1)$ we get that $$delta_N(x) = 1over2pi int_-N^Ne^ikxdk = 1over2piint_-N^0 e^ikxdk+1over2piint_0^Ne^ikxdk = \
1over2piint_0^N e^-ikxdk+1over2piint_0^Ne^ikxdk = \
1over2piint_0^Ne^ikx+e^-ikx = 1overpiint_0^N cos(kx)dk = 1overpifracsin(Nx)x tag2$$ Does this definition of the delta, in the limit, follow the properties that should have? Yes, it does, mainly $$int_-infty^inftydelta_n(x)dx=1;;;;lim_Nrightarrowpminftydelta_n(x)=0$$ So we can define the delta function as the limit of the sequence $$delta(x) = lim_Nrightarrowinfty1overpifracsin(Nx)x = lim_Nrightarrowinfty 1over2pi int_-N^Ne^ikxdk$$ The Fourier representation of the delta function is as follows $$delta(x) = int_-infty^inftye^ikxdx$$ As you can see from equation $(2)$ the only integral of $int_0^Ne^ikxdk$ it's not enough to define a Dirac delta
No, you can't. The definition you're giving is the one arising from the Fourier transform. It can be easily proven: take $fin L^1(mathbbR)$ then $$f(x) = 1over2piint_-infty^inftye^ikxleft(int_-infty^inftye^-ikyf(y)dyright)dk$$ here you cannot interchange the integrals, but you can write $$f(x) = lim_Nrightarrowinfty1over2piint_-N^Ne^ikxleft(int_-infty^inftye^-ikyf(y)dyright)dktag1$$ By the properties that the Dirac delta should have, there is $$f(x)=int_-infty^inftydelta(y-x)f(y)dy$$ so from $(1)$ we get that $$delta_N(x) = 1over2pi int_-N^Ne^ikxdk = 1over2piint_-N^0 e^ikxdk+1over2piint_0^Ne^ikxdk = \
1over2piint_0^N e^-ikxdk+1over2piint_0^Ne^ikxdk = \
1over2piint_0^Ne^ikx+e^-ikx = 1overpiint_0^N cos(kx)dk = 1overpifracsin(Nx)x tag2$$ Does this definition of the delta, in the limit, follow the properties that should have? Yes, it does, mainly $$int_-infty^inftydelta_n(x)dx=1;;;;lim_Nrightarrowpminftydelta_n(x)=0$$ So we can define the delta function as the limit of the sequence $$delta(x) = lim_Nrightarrowinfty1overpifracsin(Nx)x = lim_Nrightarrowinfty 1over2pi int_-N^Ne^ikxdk$$ The Fourier representation of the delta function is as follows $$delta(x) = int_-infty^inftye^ikxdx$$ As you can see from equation $(2)$ the only integral of $int_0^Ne^ikxdk$ it's not enough to define a Dirac delta
edited Jul 17 at 16:39
answered Jul 17 at 16:24
Davide Morgante
1,875220
1,875220
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2854648%2fcan-i-change-the-limits-in-the-fourier-transform-definition-of-the-dirac-delta-f%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password