$cos(a)=4/5$, $sin(b)=12/13$, what is $sin(c)$?
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
$cos(a)=4/5$, $sin(b)=12/13$, what is $sin(c)$?
with $a,b,c < fracpi2$.
Attempt :
Since $sin^2(a) = 1 - cos^2(a)$, I get $sin(a) = frac35$.
But how to get $sin(c)$?
I have tried using $$ fracAsin(a) = fracBsin(b) = fracCsin(c)$$
and get
$$ fracAB = frac1320= fracsin(a)sin(b) $$ so $A=13, B = 20$
. How to find $sin(c)$? Thanks.
trigonometry triangle angle
add a comment |Â
up vote
0
down vote
favorite
$cos(a)=4/5$, $sin(b)=12/13$, what is $sin(c)$?
with $a,b,c < fracpi2$.
Attempt :
Since $sin^2(a) = 1 - cos^2(a)$, I get $sin(a) = frac35$.
But how to get $sin(c)$?
I have tried using $$ fracAsin(a) = fracBsin(b) = fracCsin(c)$$
and get
$$ fracAB = frac1320= fracsin(a)sin(b) $$ so $A=13, B = 20$
. How to find $sin(c)$? Thanks.
trigonometry triangle angle
4
Assuming that's a triangle, the angles sum up to $,pi,$, so $;sin(c) = sin(a+b),$.
– dxiv
Jul 17 at 1:44
@dxiv Yes of course. Thanks.
– Arief
Jul 17 at 1:50
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
$cos(a)=4/5$, $sin(b)=12/13$, what is $sin(c)$?
with $a,b,c < fracpi2$.
Attempt :
Since $sin^2(a) = 1 - cos^2(a)$, I get $sin(a) = frac35$.
But how to get $sin(c)$?
I have tried using $$ fracAsin(a) = fracBsin(b) = fracCsin(c)$$
and get
$$ fracAB = frac1320= fracsin(a)sin(b) $$ so $A=13, B = 20$
. How to find $sin(c)$? Thanks.
trigonometry triangle angle
$cos(a)=4/5$, $sin(b)=12/13$, what is $sin(c)$?
with $a,b,c < fracpi2$.
Attempt :
Since $sin^2(a) = 1 - cos^2(a)$, I get $sin(a) = frac35$.
But how to get $sin(c)$?
I have tried using $$ fracAsin(a) = fracBsin(b) = fracCsin(c)$$
and get
$$ fracAB = frac1320= fracsin(a)sin(b) $$ so $A=13, B = 20$
. How to find $sin(c)$? Thanks.
trigonometry triangle angle
asked Jul 17 at 1:42
Arief
1,3311522
1,3311522
4
Assuming that's a triangle, the angles sum up to $,pi,$, so $;sin(c) = sin(a+b),$.
– dxiv
Jul 17 at 1:44
@dxiv Yes of course. Thanks.
– Arief
Jul 17 at 1:50
add a comment |Â
4
Assuming that's a triangle, the angles sum up to $,pi,$, so $;sin(c) = sin(a+b),$.
– dxiv
Jul 17 at 1:44
@dxiv Yes of course. Thanks.
– Arief
Jul 17 at 1:50
4
4
Assuming that's a triangle, the angles sum up to $,pi,$, so $;sin(c) = sin(a+b),$.
– dxiv
Jul 17 at 1:44
Assuming that's a triangle, the angles sum up to $,pi,$, so $;sin(c) = sin(a+b),$.
– dxiv
Jul 17 at 1:44
@dxiv Yes of course. Thanks.
– Arief
Jul 17 at 1:50
@dxiv Yes of course. Thanks.
– Arief
Jul 17 at 1:50
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
0
down vote
Note that $$c=pi -(a+b)$$ Therefore $$sin c = sin (a+b)=sin a cos b +cos a sin b=(3/5)(5/13)+(4/5)(12/13)=63/65 $$
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
Note that $$c=pi -(a+b)$$ Therefore $$sin c = sin (a+b)=sin a cos b +cos a sin b=(3/5)(5/13)+(4/5)(12/13)=63/65 $$
add a comment |Â
up vote
0
down vote
Note that $$c=pi -(a+b)$$ Therefore $$sin c = sin (a+b)=sin a cos b +cos a sin b=(3/5)(5/13)+(4/5)(12/13)=63/65 $$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Note that $$c=pi -(a+b)$$ Therefore $$sin c = sin (a+b)=sin a cos b +cos a sin b=(3/5)(5/13)+(4/5)(12/13)=63/65 $$
Note that $$c=pi -(a+b)$$ Therefore $$sin c = sin (a+b)=sin a cos b +cos a sin b=(3/5)(5/13)+(4/5)(12/13)=63/65 $$
answered Jul 17 at 2:20


Mohammad Riazi-Kermani
27.5k41852
27.5k41852
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2854047%2fcosa-4-5-sinb-12-13-what-is-sinc%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
4
Assuming that's a triangle, the angles sum up to $,pi,$, so $;sin(c) = sin(a+b),$.
– dxiv
Jul 17 at 1:44
@dxiv Yes of course. Thanks.
– Arief
Jul 17 at 1:50