Derive the asymptotic distribution of maximum likelihood estimator
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Suppose that $X_1,...,X_n$ is a random sample from a distribution with pdf :
$$ f(x,theta)= fractheta^32x^2e^-theta x space for space 0,x,infty$$
I found that $l(theta)=-nlog(2)+3nlog(theta) +2sum X_i -theta sum X_i$
Then $fracd^2dtheta^2=frac-3ntheta^2$ therefore fisher information $I(theta)= frac3ntheta^2$
How can i derive the asymptotic distribution from here ?
convergence asymptotics estimation estimation-theory fisher-information
add a comment |Â
up vote
0
down vote
favorite
Suppose that $X_1,...,X_n$ is a random sample from a distribution with pdf :
$$ f(x,theta)= fractheta^32x^2e^-theta x space for space 0,x,infty$$
I found that $l(theta)=-nlog(2)+3nlog(theta) +2sum X_i -theta sum X_i$
Then $fracd^2dtheta^2=frac-3ntheta^2$ therefore fisher information $I(theta)= frac3ntheta^2$
How can i derive the asymptotic distribution from here ?
convergence asymptotics estimation estimation-theory fisher-information
What is your MLE? We have the result $$sqrtn(hat theta_MLE-theta)sim ANleft(0,frac1E_thetaleft[fracpartialpartialthetaln f_theta(X_1)right]^2right)$$ provided some regularity conditions are met.
– StubbornAtom
Jul 30 at 15:03
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Suppose that $X_1,...,X_n$ is a random sample from a distribution with pdf :
$$ f(x,theta)= fractheta^32x^2e^-theta x space for space 0,x,infty$$
I found that $l(theta)=-nlog(2)+3nlog(theta) +2sum X_i -theta sum X_i$
Then $fracd^2dtheta^2=frac-3ntheta^2$ therefore fisher information $I(theta)= frac3ntheta^2$
How can i derive the asymptotic distribution from here ?
convergence asymptotics estimation estimation-theory fisher-information
Suppose that $X_1,...,X_n$ is a random sample from a distribution with pdf :
$$ f(x,theta)= fractheta^32x^2e^-theta x space for space 0,x,infty$$
I found that $l(theta)=-nlog(2)+3nlog(theta) +2sum X_i -theta sum X_i$
Then $fracd^2dtheta^2=frac-3ntheta^2$ therefore fisher information $I(theta)= frac3ntheta^2$
How can i derive the asymptotic distribution from here ?
convergence asymptotics estimation estimation-theory fisher-information
asked Jul 30 at 11:14
user1607
608
608
What is your MLE? We have the result $$sqrtn(hat theta_MLE-theta)sim ANleft(0,frac1E_thetaleft[fracpartialpartialthetaln f_theta(X_1)right]^2right)$$ provided some regularity conditions are met.
– StubbornAtom
Jul 30 at 15:03
add a comment |Â
What is your MLE? We have the result $$sqrtn(hat theta_MLE-theta)sim ANleft(0,frac1E_thetaleft[fracpartialpartialthetaln f_theta(X_1)right]^2right)$$ provided some regularity conditions are met.
– StubbornAtom
Jul 30 at 15:03
What is your MLE? We have the result $$sqrtn(hat theta_MLE-theta)sim ANleft(0,frac1E_thetaleft[fracpartialpartialthetaln f_theta(X_1)right]^2right)$$ provided some regularity conditions are met.
– StubbornAtom
Jul 30 at 15:03
What is your MLE? We have the result $$sqrtn(hat theta_MLE-theta)sim ANleft(0,frac1E_thetaleft[fracpartialpartialthetaln f_theta(X_1)right]^2right)$$ provided some regularity conditions are met.
– StubbornAtom
Jul 30 at 15:03
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2866895%2fderive-the-asymptotic-distribution-of-maximum-likelihood-estimator%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
What is your MLE? We have the result $$sqrtn(hat theta_MLE-theta)sim ANleft(0,frac1E_thetaleft[fracpartialpartialthetaln f_theta(X_1)right]^2right)$$ provided some regularity conditions are met.
– StubbornAtom
Jul 30 at 15:03