Determine all possible integers $x$ and $y$ s.t. $3x + 7y equiv 14 pmod28$ and $x + 3y equiv 8 pmod28$.
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
Determine all possible ints $x$ and $y$ that satisfy $3x + 7y equiv 14 pmod 28$ and $x + 3y equiv 8 pmod 28$. The answer should be in terms of $xequiv r$ and $y equiv s$ where $r$ and $s$ are remainders.
Here is what I have tried. Am I headed in the right direction?
$8cdot (3x + 7y) equiv 14 pmod 28$ and $14 cdot (x + 3y) equiv 8 pmod 28$
$24x + 56y equiv 112 pmod 28$ and $14x + 42y equiv 112 pmod 28$
$24x + 56y equiv 14x + 42y pmod 28$
This is where I start to get unsure,
$24x + 28y + 28y equiv 14x + 14y + 28y pmod 28$
$24x equiv 14x + 14y pmod 28$
$48x equiv 28x + 28y pmod 28$
So then...?
$20x equiv 1 pmod 28$?
Stuck here. Is this even the right idea?
elementary-number-theory modular-arithmetic
add a comment |Â
up vote
3
down vote
favorite
Determine all possible ints $x$ and $y$ that satisfy $3x + 7y equiv 14 pmod 28$ and $x + 3y equiv 8 pmod 28$. The answer should be in terms of $xequiv r$ and $y equiv s$ where $r$ and $s$ are remainders.
Here is what I have tried. Am I headed in the right direction?
$8cdot (3x + 7y) equiv 14 pmod 28$ and $14 cdot (x + 3y) equiv 8 pmod 28$
$24x + 56y equiv 112 pmod 28$ and $14x + 42y equiv 112 pmod 28$
$24x + 56y equiv 14x + 42y pmod 28$
This is where I start to get unsure,
$24x + 28y + 28y equiv 14x + 14y + 28y pmod 28$
$24x equiv 14x + 14y pmod 28$
$48x equiv 28x + 28y pmod 28$
So then...?
$20x equiv 1 pmod 28$?
Stuck here. Is this even the right idea?
elementary-number-theory modular-arithmetic
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
Determine all possible ints $x$ and $y$ that satisfy $3x + 7y equiv 14 pmod 28$ and $x + 3y equiv 8 pmod 28$. The answer should be in terms of $xequiv r$ and $y equiv s$ where $r$ and $s$ are remainders.
Here is what I have tried. Am I headed in the right direction?
$8cdot (3x + 7y) equiv 14 pmod 28$ and $14 cdot (x + 3y) equiv 8 pmod 28$
$24x + 56y equiv 112 pmod 28$ and $14x + 42y equiv 112 pmod 28$
$24x + 56y equiv 14x + 42y pmod 28$
This is where I start to get unsure,
$24x + 28y + 28y equiv 14x + 14y + 28y pmod 28$
$24x equiv 14x + 14y pmod 28$
$48x equiv 28x + 28y pmod 28$
So then...?
$20x equiv 1 pmod 28$?
Stuck here. Is this even the right idea?
elementary-number-theory modular-arithmetic
Determine all possible ints $x$ and $y$ that satisfy $3x + 7y equiv 14 pmod 28$ and $x + 3y equiv 8 pmod 28$. The answer should be in terms of $xequiv r$ and $y equiv s$ where $r$ and $s$ are remainders.
Here is what I have tried. Am I headed in the right direction?
$8cdot (3x + 7y) equiv 14 pmod 28$ and $14 cdot (x + 3y) equiv 8 pmod 28$
$24x + 56y equiv 112 pmod 28$ and $14x + 42y equiv 112 pmod 28$
$24x + 56y equiv 14x + 42y pmod 28$
This is where I start to get unsure,
$24x + 28y + 28y equiv 14x + 14y + 28y pmod 28$
$24x equiv 14x + 14y pmod 28$
$48x equiv 28x + 28y pmod 28$
So then...?
$20x equiv 1 pmod 28$?
Stuck here. Is this even the right idea?
elementary-number-theory modular-arithmetic
edited Jul 19 at 20:35


David G. Stork
7,6632929
7,6632929
asked Jul 19 at 19:54
SolidSnackDrive
1107
1107
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
6
down vote
accepted
We have
begineqnarray*
3x+7y equiv 14 pmod28 \
x+3y equiv 8 pmod28.
endeqnarray*
Multiply the second equation by $3$ and then subtract the first
begineqnarray*
3x+9y equiv 24 pmod28 \
2y equiv 10 pmod28.
endeqnarray*
So
begineqnarray*
y &equiv 5 pmod28 \
x & equiv 21 pmod28
endeqnarray*
orbegineqnarray*
y &equiv 19 pmod28 \
x & equiv 7 pmod28.
endeqnarray*
2
and what about the case $yequiv 19$, since $38equiv 10bmod 28$?
– Joffan
Jul 19 at 20:04
Crap, I did way too much work!
– SolidSnackDrive
Jul 19 at 20:05
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
6
down vote
accepted
We have
begineqnarray*
3x+7y equiv 14 pmod28 \
x+3y equiv 8 pmod28.
endeqnarray*
Multiply the second equation by $3$ and then subtract the first
begineqnarray*
3x+9y equiv 24 pmod28 \
2y equiv 10 pmod28.
endeqnarray*
So
begineqnarray*
y &equiv 5 pmod28 \
x & equiv 21 pmod28
endeqnarray*
orbegineqnarray*
y &equiv 19 pmod28 \
x & equiv 7 pmod28.
endeqnarray*
2
and what about the case $yequiv 19$, since $38equiv 10bmod 28$?
– Joffan
Jul 19 at 20:04
Crap, I did way too much work!
– SolidSnackDrive
Jul 19 at 20:05
add a comment |Â
up vote
6
down vote
accepted
We have
begineqnarray*
3x+7y equiv 14 pmod28 \
x+3y equiv 8 pmod28.
endeqnarray*
Multiply the second equation by $3$ and then subtract the first
begineqnarray*
3x+9y equiv 24 pmod28 \
2y equiv 10 pmod28.
endeqnarray*
So
begineqnarray*
y &equiv 5 pmod28 \
x & equiv 21 pmod28
endeqnarray*
orbegineqnarray*
y &equiv 19 pmod28 \
x & equiv 7 pmod28.
endeqnarray*
2
and what about the case $yequiv 19$, since $38equiv 10bmod 28$?
– Joffan
Jul 19 at 20:04
Crap, I did way too much work!
– SolidSnackDrive
Jul 19 at 20:05
add a comment |Â
up vote
6
down vote
accepted
up vote
6
down vote
accepted
We have
begineqnarray*
3x+7y equiv 14 pmod28 \
x+3y equiv 8 pmod28.
endeqnarray*
Multiply the second equation by $3$ and then subtract the first
begineqnarray*
3x+9y equiv 24 pmod28 \
2y equiv 10 pmod28.
endeqnarray*
So
begineqnarray*
y &equiv 5 pmod28 \
x & equiv 21 pmod28
endeqnarray*
orbegineqnarray*
y &equiv 19 pmod28 \
x & equiv 7 pmod28.
endeqnarray*
We have
begineqnarray*
3x+7y equiv 14 pmod28 \
x+3y equiv 8 pmod28.
endeqnarray*
Multiply the second equation by $3$ and then subtract the first
begineqnarray*
3x+9y equiv 24 pmod28 \
2y equiv 10 pmod28.
endeqnarray*
So
begineqnarray*
y &equiv 5 pmod28 \
x & equiv 21 pmod28
endeqnarray*
orbegineqnarray*
y &equiv 19 pmod28 \
x & equiv 7 pmod28.
endeqnarray*
edited Jul 19 at 20:06
answered Jul 19 at 20:02
Donald Splutterwit
21.3k21243
21.3k21243
2
and what about the case $yequiv 19$, since $38equiv 10bmod 28$?
– Joffan
Jul 19 at 20:04
Crap, I did way too much work!
– SolidSnackDrive
Jul 19 at 20:05
add a comment |Â
2
and what about the case $yequiv 19$, since $38equiv 10bmod 28$?
– Joffan
Jul 19 at 20:04
Crap, I did way too much work!
– SolidSnackDrive
Jul 19 at 20:05
2
2
and what about the case $yequiv 19$, since $38equiv 10bmod 28$?
– Joffan
Jul 19 at 20:04
and what about the case $yequiv 19$, since $38equiv 10bmod 28$?
– Joffan
Jul 19 at 20:04
Crap, I did way too much work!
– SolidSnackDrive
Jul 19 at 20:05
Crap, I did way too much work!
– SolidSnackDrive
Jul 19 at 20:05
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2857002%2fdetermine-all-possible-integers-x-and-y-s-t-3x-7y-equiv-14-pmod28-a%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password