Evaluating $lim_xto0 fraccos x - cos 3xsin 3x^2 - sin x^2$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
9
down vote

favorite
1













$$ lim_xto0fraccos x-cos (3x)sin (3x^2)-sin (x^2) $$




Is there a simple way of finding the limit?

I know the long one: rewrite it as
$$ -lim_xto 0fraccos x-cos(3x)sin(3x^2)cdotfrac11-dfracsin(3x^2)sin(x^2) $$
and then find both limits in separately applying L'Hospital's rule several times. The answer is $2$.







share|cite|improve this question

























    up vote
    9
    down vote

    favorite
    1













    $$ lim_xto0fraccos x-cos (3x)sin (3x^2)-sin (x^2) $$




    Is there a simple way of finding the limit?

    I know the long one: rewrite it as
    $$ -lim_xto 0fraccos x-cos(3x)sin(3x^2)cdotfrac11-dfracsin(3x^2)sin(x^2) $$
    and then find both limits in separately applying L'Hospital's rule several times. The answer is $2$.







    share|cite|improve this question























      up vote
      9
      down vote

      favorite
      1









      up vote
      9
      down vote

      favorite
      1






      1






      $$ lim_xto0fraccos x-cos (3x)sin (3x^2)-sin (x^2) $$




      Is there a simple way of finding the limit?

      I know the long one: rewrite it as
      $$ -lim_xto 0fraccos x-cos(3x)sin(3x^2)cdotfrac11-dfracsin(3x^2)sin(x^2) $$
      and then find both limits in separately applying L'Hospital's rule several times. The answer is $2$.







      share|cite|improve this question














      $$ lim_xto0fraccos x-cos (3x)sin (3x^2)-sin (x^2) $$




      Is there a simple way of finding the limit?

      I know the long one: rewrite it as
      $$ -lim_xto 0fraccos x-cos(3x)sin(3x^2)cdotfrac11-dfracsin(3x^2)sin(x^2) $$
      and then find both limits in separately applying L'Hospital's rule several times. The answer is $2$.









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Jul 31 at 2:37









      user 108128

      18.9k41544




      18.9k41544









      asked Jul 30 at 20:14









      Pavel Iljiev

      754




      754




















          8 Answers
          8






          active

          oldest

          votes

















          up vote
          12
          down vote



          accepted










          By standard limits



          • $fracsin xx to 1$


          • $frac1-cos xx^2 to frac12$


          we have that



          $$fraccos x-cos(3x)sin(3x^2)-sin(x^2)=fracfraccos x-1+1- cos(3x)x^2 fracsin(3x^2)-sin(x^2)x^2=frac-frac1-cos xx^2+9frac1- cos(3x)(3x)^2 3fracsin(3x^2)3x^2-fracsin(x^2)x^2tofrac-frac12+frac923-1=2$$






          share|cite|improve this answer






























            up vote
            8
            down vote













            Hint: Use
            $$sin 3a=3sin a-4sin^3a$$
            $$cos 3a=4cos^3a-3cos a$$
            Edit:
            After substutution it is
            $$lim_xto0frac2cos xsin^2xsin x^2cos2x^2=2$$






            share|cite|improve this answer



















            • 1




              Now the votes are balanced!
              – user 108128
              Jul 30 at 21:01

















            up vote
            8
            down vote













            I would use Taylor polynomials at order $2$.



            $$fraccos x-cos (3x)sin (3x^2)-sin (x^2)=frac1-fracx^22-left(1-frac(3x)^22right)+o(x^2)3x^2-x^2+o(x^2)=frac4x^2+o(x^2)2x^2+o(x^2)=2+o(1)
            $$






            share|cite|improve this answer



















            • 5




              Minor nitpick: if you're going to use $o$-notation, you should do it throughout the whole calculation, and not only at the end. Otherwise the notation would be inconsistent.
              – AccidentalFourierTransform
              Jul 30 at 20:55










            • @gimusi Indeed I made an error : not dividing the o() by $x^2$. Thanks for noting. I corrected.
              – mathcounterexamples.net
              Jul 31 at 10:41











            • @mathcounterexamples.net Well done! You are welcome, Bye.
              – gimusi
              Jul 31 at 13:45

















            up vote
            7
            down vote













            Hint: Use the factorisation formula $$cos a -cos b =-2sina+bover 2sina-bover 2$$
            and
            $$sin a -sin b =2sina-bover 2cosa+bover 2$$



            $$ lim_xto0fraccos x-cos (3x)sin (3x^2)-sin (x^2) = lim_xto0frac2colorredsin 2xcdot colorgreensin xcdotcolorbluex^2colorbluesin (x^2)cos (2x^2)cdotcolorred2xcdot colorgreenx =2$$






            share|cite|improve this answer























            • This is my way: mathworld.wolfram.com/ProsthaphaeresisFormulas.html
              – lab bhattacharjee
              Jul 31 at 7:34

















            up vote
            4
            down vote













            Simply use Taylor' formula ultimately at order $2$ to find equivalents: near $0$,
            $$cos u=1-fracu^22+o(u^2),qquad sin u=u+o(u)$$
            so
            beginalign
            cos x-cos 3x&=1-fracx^22+o(x^2)-Bigl(1-frac9x^22+o(x^2)Bigr)= 4x^2+o(x^2)\
            sin 3x^2-sin x^2&=3x^2+o(x^2)-bigl(sin x^2+o(x^2)bigr)=2x^2+o(x^2).
            endalign
            Thus the numerator is equivalent to $4x^2$, the denominator to $2x^2$, whence
            $$fraccos x-cos 3xsin 3x^2-sin x^2sim_0frac4x^22x^2=2.$$






            share|cite|improve this answer




























              up vote
              2
              down vote













              Use the Maclaurin series
              $$cos x = 1-1/2 ; x^2+1/24 ; x^4 +O(x^6)$$
              $$cos 3x = 1-9/2 ; x^2+27/8 ; x^4 +O(x^6)$$
              $$sin x^2 = x^2-1/6; x^6+O(x^8)$$
              $$sin 3x^2 = 3x^2-9/2 ; x^6+O(x^8)$$
              then quotient is
              $$frac-1/2 + 9/23-1 + O(x^2)$$
              and therefore the limit is 2.






              share|cite|improve this answer





















              • To simplify, It suffices to expand to the second order terms $x^2$.
                – gimusi
                Jul 30 at 20:38

















              up vote
              2
              down vote













              Using l'Hôpital directly is very awkward.



              The denominator has $x^2$, but it is immediate that
              $$
              lim_tto0fracsin3t-sin tt=3-1=2
              $$
              Consequently, also
              $$
              lim_xto0fracsin(3x^2)-sin(x^2)2x^2=1
              $$
              Good! Now we can write our limit in the form
              $$
              lim_xto0fraccos x-cos 3x2x^2frac2x^2sin(3x^2)-sin(x^2)
              $$
              The first fraction can be easily dealt with:
              $$
              lim_xto0fraccos x-cos 3x2x^2=
              lim_xto0frac3sin3x-sin x4x=
              lim_xto0frac9cos3x-cos x4=2
              $$




              For completeness, a much simpler strategy is using Taylor expansion:
              $$
              fraccos x-cos3xsin(3x^2)-sin(x^2)=
              frac1-x^2/2-1+(3x)^2/2+o(x^2)3x^2-x^2+o(x^2)=
              frac4+o(1)2+o(1)
              $$
              so the limit is $2$.






              share|cite|improve this answer





















              • Is this correct $o(1)→0$?
                – Takahiro Waki
                Jul 31 at 0:55






              • 1




                @TakahiroWaki Yes of course, recall that by definition $o(1)=1cdot omega(x)$ with $omega(x)to 0$.
                – gimusi
                Jul 31 at 5:39

















              up vote
              0
              down vote













              $$
              cos x-cos(3x) = cos xleft(sin^2x+3sin^2 xright)
              $$



              then



              $$
              fraccos x-cos (3x)sin (3x^2)-sin (x^2) = fracx^2x^2cos xleft(fracsin^2x+3sin^2 xsin (3x^2)-sin (x^2)right)=cos xleft(fracleft(fracsin xxright)^2+3left(fracsin xxright)^2frac3sin(3x^2)3x^2-fracsin (x^2)x^2right)
              $$



              hence



              $$
              lim_xto 0=cos xleft(fracleft(fracsin xxright)^2+3left(fracsin xxright)^2frac3sin(3x^2)3x^2-fracsin (x^2)x^2right) = 1cdotleft(frac1+33-1right) = 2
              $$






              share|cite|improve this answer





















                Your Answer




                StackExchange.ifUsing("editor", function ()
                return StackExchange.using("mathjaxEditing", function ()
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                );
                );
                , "mathjax-editing");

                StackExchange.ready(function()
                var channelOptions =
                tags: "".split(" "),
                id: "69"
                ;
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function()
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled)
                StackExchange.using("snippets", function()
                createEditor();
                );

                else
                createEditor();

                );

                function createEditor()
                StackExchange.prepareEditor(
                heartbeatType: 'answer',
                convertImagesToLinks: true,
                noModals: false,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                );



                );








                 

                draft saved


                draft discarded


















                StackExchange.ready(
                function ()
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2867375%2fevaluating-lim-x-to0-frac-cos-x-cos-3x-sin-3x2-sin-x2%23new-answer', 'question_page');

                );

                Post as a guest






























                8 Answers
                8






                active

                oldest

                votes








                8 Answers
                8






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes








                up vote
                12
                down vote



                accepted










                By standard limits



                • $fracsin xx to 1$


                • $frac1-cos xx^2 to frac12$


                we have that



                $$fraccos x-cos(3x)sin(3x^2)-sin(x^2)=fracfraccos x-1+1- cos(3x)x^2 fracsin(3x^2)-sin(x^2)x^2=frac-frac1-cos xx^2+9frac1- cos(3x)(3x)^2 3fracsin(3x^2)3x^2-fracsin(x^2)x^2tofrac-frac12+frac923-1=2$$






                share|cite|improve this answer



























                  up vote
                  12
                  down vote



                  accepted










                  By standard limits



                  • $fracsin xx to 1$


                  • $frac1-cos xx^2 to frac12$


                  we have that



                  $$fraccos x-cos(3x)sin(3x^2)-sin(x^2)=fracfraccos x-1+1- cos(3x)x^2 fracsin(3x^2)-sin(x^2)x^2=frac-frac1-cos xx^2+9frac1- cos(3x)(3x)^2 3fracsin(3x^2)3x^2-fracsin(x^2)x^2tofrac-frac12+frac923-1=2$$






                  share|cite|improve this answer

























                    up vote
                    12
                    down vote



                    accepted







                    up vote
                    12
                    down vote



                    accepted






                    By standard limits



                    • $fracsin xx to 1$


                    • $frac1-cos xx^2 to frac12$


                    we have that



                    $$fraccos x-cos(3x)sin(3x^2)-sin(x^2)=fracfraccos x-1+1- cos(3x)x^2 fracsin(3x^2)-sin(x^2)x^2=frac-frac1-cos xx^2+9frac1- cos(3x)(3x)^2 3fracsin(3x^2)3x^2-fracsin(x^2)x^2tofrac-frac12+frac923-1=2$$






                    share|cite|improve this answer















                    By standard limits



                    • $fracsin xx to 1$


                    • $frac1-cos xx^2 to frac12$


                    we have that



                    $$fraccos x-cos(3x)sin(3x^2)-sin(x^2)=fracfraccos x-1+1- cos(3x)x^2 fracsin(3x^2)-sin(x^2)x^2=frac-frac1-cos xx^2+9frac1- cos(3x)(3x)^2 3fracsin(3x^2)3x^2-fracsin(x^2)x^2tofrac-frac12+frac923-1=2$$







                    share|cite|improve this answer















                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Jul 30 at 20:50


























                    answered Jul 30 at 20:22









                    gimusi

                    64.2k73480




                    64.2k73480




















                        up vote
                        8
                        down vote













                        Hint: Use
                        $$sin 3a=3sin a-4sin^3a$$
                        $$cos 3a=4cos^3a-3cos a$$
                        Edit:
                        After substutution it is
                        $$lim_xto0frac2cos xsin^2xsin x^2cos2x^2=2$$






                        share|cite|improve this answer



















                        • 1




                          Now the votes are balanced!
                          – user 108128
                          Jul 30 at 21:01














                        up vote
                        8
                        down vote













                        Hint: Use
                        $$sin 3a=3sin a-4sin^3a$$
                        $$cos 3a=4cos^3a-3cos a$$
                        Edit:
                        After substutution it is
                        $$lim_xto0frac2cos xsin^2xsin x^2cos2x^2=2$$






                        share|cite|improve this answer



















                        • 1




                          Now the votes are balanced!
                          – user 108128
                          Jul 30 at 21:01












                        up vote
                        8
                        down vote










                        up vote
                        8
                        down vote









                        Hint: Use
                        $$sin 3a=3sin a-4sin^3a$$
                        $$cos 3a=4cos^3a-3cos a$$
                        Edit:
                        After substutution it is
                        $$lim_xto0frac2cos xsin^2xsin x^2cos2x^2=2$$






                        share|cite|improve this answer















                        Hint: Use
                        $$sin 3a=3sin a-4sin^3a$$
                        $$cos 3a=4cos^3a-3cos a$$
                        Edit:
                        After substutution it is
                        $$lim_xto0frac2cos xsin^2xsin x^2cos2x^2=2$$







                        share|cite|improve this answer















                        share|cite|improve this answer



                        share|cite|improve this answer








                        edited Jul 30 at 20:29


























                        answered Jul 30 at 20:21









                        user 108128

                        18.9k41544




                        18.9k41544







                        • 1




                          Now the votes are balanced!
                          – user 108128
                          Jul 30 at 21:01












                        • 1




                          Now the votes are balanced!
                          – user 108128
                          Jul 30 at 21:01







                        1




                        1




                        Now the votes are balanced!
                        – user 108128
                        Jul 30 at 21:01




                        Now the votes are balanced!
                        – user 108128
                        Jul 30 at 21:01










                        up vote
                        8
                        down vote













                        I would use Taylor polynomials at order $2$.



                        $$fraccos x-cos (3x)sin (3x^2)-sin (x^2)=frac1-fracx^22-left(1-frac(3x)^22right)+o(x^2)3x^2-x^2+o(x^2)=frac4x^2+o(x^2)2x^2+o(x^2)=2+o(1)
                        $$






                        share|cite|improve this answer



















                        • 5




                          Minor nitpick: if you're going to use $o$-notation, you should do it throughout the whole calculation, and not only at the end. Otherwise the notation would be inconsistent.
                          – AccidentalFourierTransform
                          Jul 30 at 20:55










                        • @gimusi Indeed I made an error : not dividing the o() by $x^2$. Thanks for noting. I corrected.
                          – mathcounterexamples.net
                          Jul 31 at 10:41











                        • @mathcounterexamples.net Well done! You are welcome, Bye.
                          – gimusi
                          Jul 31 at 13:45














                        up vote
                        8
                        down vote













                        I would use Taylor polynomials at order $2$.



                        $$fraccos x-cos (3x)sin (3x^2)-sin (x^2)=frac1-fracx^22-left(1-frac(3x)^22right)+o(x^2)3x^2-x^2+o(x^2)=frac4x^2+o(x^2)2x^2+o(x^2)=2+o(1)
                        $$






                        share|cite|improve this answer



















                        • 5




                          Minor nitpick: if you're going to use $o$-notation, you should do it throughout the whole calculation, and not only at the end. Otherwise the notation would be inconsistent.
                          – AccidentalFourierTransform
                          Jul 30 at 20:55










                        • @gimusi Indeed I made an error : not dividing the o() by $x^2$. Thanks for noting. I corrected.
                          – mathcounterexamples.net
                          Jul 31 at 10:41











                        • @mathcounterexamples.net Well done! You are welcome, Bye.
                          – gimusi
                          Jul 31 at 13:45












                        up vote
                        8
                        down vote










                        up vote
                        8
                        down vote









                        I would use Taylor polynomials at order $2$.



                        $$fraccos x-cos (3x)sin (3x^2)-sin (x^2)=frac1-fracx^22-left(1-frac(3x)^22right)+o(x^2)3x^2-x^2+o(x^2)=frac4x^2+o(x^2)2x^2+o(x^2)=2+o(1)
                        $$






                        share|cite|improve this answer















                        I would use Taylor polynomials at order $2$.



                        $$fraccos x-cos (3x)sin (3x^2)-sin (x^2)=frac1-fracx^22-left(1-frac(3x)^22right)+o(x^2)3x^2-x^2+o(x^2)=frac4x^2+o(x^2)2x^2+o(x^2)=2+o(1)
                        $$







                        share|cite|improve this answer















                        share|cite|improve this answer



                        share|cite|improve this answer








                        edited Jul 31 at 10:39


























                        answered Jul 30 at 20:31









                        mathcounterexamples.net

                        23.1k21651




                        23.1k21651







                        • 5




                          Minor nitpick: if you're going to use $o$-notation, you should do it throughout the whole calculation, and not only at the end. Otherwise the notation would be inconsistent.
                          – AccidentalFourierTransform
                          Jul 30 at 20:55










                        • @gimusi Indeed I made an error : not dividing the o() by $x^2$. Thanks for noting. I corrected.
                          – mathcounterexamples.net
                          Jul 31 at 10:41











                        • @mathcounterexamples.net Well done! You are welcome, Bye.
                          – gimusi
                          Jul 31 at 13:45












                        • 5




                          Minor nitpick: if you're going to use $o$-notation, you should do it throughout the whole calculation, and not only at the end. Otherwise the notation would be inconsistent.
                          – AccidentalFourierTransform
                          Jul 30 at 20:55










                        • @gimusi Indeed I made an error : not dividing the o() by $x^2$. Thanks for noting. I corrected.
                          – mathcounterexamples.net
                          Jul 31 at 10:41











                        • @mathcounterexamples.net Well done! You are welcome, Bye.
                          – gimusi
                          Jul 31 at 13:45







                        5




                        5




                        Minor nitpick: if you're going to use $o$-notation, you should do it throughout the whole calculation, and not only at the end. Otherwise the notation would be inconsistent.
                        – AccidentalFourierTransform
                        Jul 30 at 20:55




                        Minor nitpick: if you're going to use $o$-notation, you should do it throughout the whole calculation, and not only at the end. Otherwise the notation would be inconsistent.
                        – AccidentalFourierTransform
                        Jul 30 at 20:55












                        @gimusi Indeed I made an error : not dividing the o() by $x^2$. Thanks for noting. I corrected.
                        – mathcounterexamples.net
                        Jul 31 at 10:41





                        @gimusi Indeed I made an error : not dividing the o() by $x^2$. Thanks for noting. I corrected.
                        – mathcounterexamples.net
                        Jul 31 at 10:41













                        @mathcounterexamples.net Well done! You are welcome, Bye.
                        – gimusi
                        Jul 31 at 13:45




                        @mathcounterexamples.net Well done! You are welcome, Bye.
                        – gimusi
                        Jul 31 at 13:45










                        up vote
                        7
                        down vote













                        Hint: Use the factorisation formula $$cos a -cos b =-2sina+bover 2sina-bover 2$$
                        and
                        $$sin a -sin b =2sina-bover 2cosa+bover 2$$



                        $$ lim_xto0fraccos x-cos (3x)sin (3x^2)-sin (x^2) = lim_xto0frac2colorredsin 2xcdot colorgreensin xcdotcolorbluex^2colorbluesin (x^2)cos (2x^2)cdotcolorred2xcdot colorgreenx =2$$






                        share|cite|improve this answer























                        • This is my way: mathworld.wolfram.com/ProsthaphaeresisFormulas.html
                          – lab bhattacharjee
                          Jul 31 at 7:34














                        up vote
                        7
                        down vote













                        Hint: Use the factorisation formula $$cos a -cos b =-2sina+bover 2sina-bover 2$$
                        and
                        $$sin a -sin b =2sina-bover 2cosa+bover 2$$



                        $$ lim_xto0fraccos x-cos (3x)sin (3x^2)-sin (x^2) = lim_xto0frac2colorredsin 2xcdot colorgreensin xcdotcolorbluex^2colorbluesin (x^2)cos (2x^2)cdotcolorred2xcdot colorgreenx =2$$






                        share|cite|improve this answer























                        • This is my way: mathworld.wolfram.com/ProsthaphaeresisFormulas.html
                          – lab bhattacharjee
                          Jul 31 at 7:34












                        up vote
                        7
                        down vote










                        up vote
                        7
                        down vote









                        Hint: Use the factorisation formula $$cos a -cos b =-2sina+bover 2sina-bover 2$$
                        and
                        $$sin a -sin b =2sina-bover 2cosa+bover 2$$



                        $$ lim_xto0fraccos x-cos (3x)sin (3x^2)-sin (x^2) = lim_xto0frac2colorredsin 2xcdot colorgreensin xcdotcolorbluex^2colorbluesin (x^2)cos (2x^2)cdotcolorred2xcdot colorgreenx =2$$






                        share|cite|improve this answer















                        Hint: Use the factorisation formula $$cos a -cos b =-2sina+bover 2sina-bover 2$$
                        and
                        $$sin a -sin b =2sina-bover 2cosa+bover 2$$



                        $$ lim_xto0fraccos x-cos (3x)sin (3x^2)-sin (x^2) = lim_xto0frac2colorredsin 2xcdot colorgreensin xcdotcolorbluex^2colorbluesin (x^2)cos (2x^2)cdotcolorred2xcdot colorgreenx =2$$







                        share|cite|improve this answer















                        share|cite|improve this answer



                        share|cite|improve this answer








                        edited Jul 30 at 20:28


























                        answered Jul 30 at 20:17









                        greedoid

                        26k93473




                        26k93473











                        • This is my way: mathworld.wolfram.com/ProsthaphaeresisFormulas.html
                          – lab bhattacharjee
                          Jul 31 at 7:34
















                        • This is my way: mathworld.wolfram.com/ProsthaphaeresisFormulas.html
                          – lab bhattacharjee
                          Jul 31 at 7:34















                        This is my way: mathworld.wolfram.com/ProsthaphaeresisFormulas.html
                        – lab bhattacharjee
                        Jul 31 at 7:34




                        This is my way: mathworld.wolfram.com/ProsthaphaeresisFormulas.html
                        – lab bhattacharjee
                        Jul 31 at 7:34










                        up vote
                        4
                        down vote













                        Simply use Taylor' formula ultimately at order $2$ to find equivalents: near $0$,
                        $$cos u=1-fracu^22+o(u^2),qquad sin u=u+o(u)$$
                        so
                        beginalign
                        cos x-cos 3x&=1-fracx^22+o(x^2)-Bigl(1-frac9x^22+o(x^2)Bigr)= 4x^2+o(x^2)\
                        sin 3x^2-sin x^2&=3x^2+o(x^2)-bigl(sin x^2+o(x^2)bigr)=2x^2+o(x^2).
                        endalign
                        Thus the numerator is equivalent to $4x^2$, the denominator to $2x^2$, whence
                        $$fraccos x-cos 3xsin 3x^2-sin x^2sim_0frac4x^22x^2=2.$$






                        share|cite|improve this answer

























                          up vote
                          4
                          down vote













                          Simply use Taylor' formula ultimately at order $2$ to find equivalents: near $0$,
                          $$cos u=1-fracu^22+o(u^2),qquad sin u=u+o(u)$$
                          so
                          beginalign
                          cos x-cos 3x&=1-fracx^22+o(x^2)-Bigl(1-frac9x^22+o(x^2)Bigr)= 4x^2+o(x^2)\
                          sin 3x^2-sin x^2&=3x^2+o(x^2)-bigl(sin x^2+o(x^2)bigr)=2x^2+o(x^2).
                          endalign
                          Thus the numerator is equivalent to $4x^2$, the denominator to $2x^2$, whence
                          $$fraccos x-cos 3xsin 3x^2-sin x^2sim_0frac4x^22x^2=2.$$






                          share|cite|improve this answer























                            up vote
                            4
                            down vote










                            up vote
                            4
                            down vote









                            Simply use Taylor' formula ultimately at order $2$ to find equivalents: near $0$,
                            $$cos u=1-fracu^22+o(u^2),qquad sin u=u+o(u)$$
                            so
                            beginalign
                            cos x-cos 3x&=1-fracx^22+o(x^2)-Bigl(1-frac9x^22+o(x^2)Bigr)= 4x^2+o(x^2)\
                            sin 3x^2-sin x^2&=3x^2+o(x^2)-bigl(sin x^2+o(x^2)bigr)=2x^2+o(x^2).
                            endalign
                            Thus the numerator is equivalent to $4x^2$, the denominator to $2x^2$, whence
                            $$fraccos x-cos 3xsin 3x^2-sin x^2sim_0frac4x^22x^2=2.$$






                            share|cite|improve this answer













                            Simply use Taylor' formula ultimately at order $2$ to find equivalents: near $0$,
                            $$cos u=1-fracu^22+o(u^2),qquad sin u=u+o(u)$$
                            so
                            beginalign
                            cos x-cos 3x&=1-fracx^22+o(x^2)-Bigl(1-frac9x^22+o(x^2)Bigr)= 4x^2+o(x^2)\
                            sin 3x^2-sin x^2&=3x^2+o(x^2)-bigl(sin x^2+o(x^2)bigr)=2x^2+o(x^2).
                            endalign
                            Thus the numerator is equivalent to $4x^2$, the denominator to $2x^2$, whence
                            $$fraccos x-cos 3xsin 3x^2-sin x^2sim_0frac4x^22x^2=2.$$







                            share|cite|improve this answer













                            share|cite|improve this answer



                            share|cite|improve this answer











                            answered Jul 30 at 20:30









                            Bernard

                            110k635102




                            110k635102




















                                up vote
                                2
                                down vote













                                Use the Maclaurin series
                                $$cos x = 1-1/2 ; x^2+1/24 ; x^4 +O(x^6)$$
                                $$cos 3x = 1-9/2 ; x^2+27/8 ; x^4 +O(x^6)$$
                                $$sin x^2 = x^2-1/6; x^6+O(x^8)$$
                                $$sin 3x^2 = 3x^2-9/2 ; x^6+O(x^8)$$
                                then quotient is
                                $$frac-1/2 + 9/23-1 + O(x^2)$$
                                and therefore the limit is 2.






                                share|cite|improve this answer





















                                • To simplify, It suffices to expand to the second order terms $x^2$.
                                  – gimusi
                                  Jul 30 at 20:38














                                up vote
                                2
                                down vote













                                Use the Maclaurin series
                                $$cos x = 1-1/2 ; x^2+1/24 ; x^4 +O(x^6)$$
                                $$cos 3x = 1-9/2 ; x^2+27/8 ; x^4 +O(x^6)$$
                                $$sin x^2 = x^2-1/6; x^6+O(x^8)$$
                                $$sin 3x^2 = 3x^2-9/2 ; x^6+O(x^8)$$
                                then quotient is
                                $$frac-1/2 + 9/23-1 + O(x^2)$$
                                and therefore the limit is 2.






                                share|cite|improve this answer





















                                • To simplify, It suffices to expand to the second order terms $x^2$.
                                  – gimusi
                                  Jul 30 at 20:38












                                up vote
                                2
                                down vote










                                up vote
                                2
                                down vote









                                Use the Maclaurin series
                                $$cos x = 1-1/2 ; x^2+1/24 ; x^4 +O(x^6)$$
                                $$cos 3x = 1-9/2 ; x^2+27/8 ; x^4 +O(x^6)$$
                                $$sin x^2 = x^2-1/6; x^6+O(x^8)$$
                                $$sin 3x^2 = 3x^2-9/2 ; x^6+O(x^8)$$
                                then quotient is
                                $$frac-1/2 + 9/23-1 + O(x^2)$$
                                and therefore the limit is 2.






                                share|cite|improve this answer













                                Use the Maclaurin series
                                $$cos x = 1-1/2 ; x^2+1/24 ; x^4 +O(x^6)$$
                                $$cos 3x = 1-9/2 ; x^2+27/8 ; x^4 +O(x^6)$$
                                $$sin x^2 = x^2-1/6; x^6+O(x^8)$$
                                $$sin 3x^2 = 3x^2-9/2 ; x^6+O(x^8)$$
                                then quotient is
                                $$frac-1/2 + 9/23-1 + O(x^2)$$
                                and therefore the limit is 2.







                                share|cite|improve this answer













                                share|cite|improve this answer



                                share|cite|improve this answer











                                answered Jul 30 at 20:30









                                gammatester

                                15.7k21429




                                15.7k21429











                                • To simplify, It suffices to expand to the second order terms $x^2$.
                                  – gimusi
                                  Jul 30 at 20:38
















                                • To simplify, It suffices to expand to the second order terms $x^2$.
                                  – gimusi
                                  Jul 30 at 20:38















                                To simplify, It suffices to expand to the second order terms $x^2$.
                                – gimusi
                                Jul 30 at 20:38




                                To simplify, It suffices to expand to the second order terms $x^2$.
                                – gimusi
                                Jul 30 at 20:38










                                up vote
                                2
                                down vote













                                Using l'Hôpital directly is very awkward.



                                The denominator has $x^2$, but it is immediate that
                                $$
                                lim_tto0fracsin3t-sin tt=3-1=2
                                $$
                                Consequently, also
                                $$
                                lim_xto0fracsin(3x^2)-sin(x^2)2x^2=1
                                $$
                                Good! Now we can write our limit in the form
                                $$
                                lim_xto0fraccos x-cos 3x2x^2frac2x^2sin(3x^2)-sin(x^2)
                                $$
                                The first fraction can be easily dealt with:
                                $$
                                lim_xto0fraccos x-cos 3x2x^2=
                                lim_xto0frac3sin3x-sin x4x=
                                lim_xto0frac9cos3x-cos x4=2
                                $$




                                For completeness, a much simpler strategy is using Taylor expansion:
                                $$
                                fraccos x-cos3xsin(3x^2)-sin(x^2)=
                                frac1-x^2/2-1+(3x)^2/2+o(x^2)3x^2-x^2+o(x^2)=
                                frac4+o(1)2+o(1)
                                $$
                                so the limit is $2$.






                                share|cite|improve this answer





















                                • Is this correct $o(1)→0$?
                                  – Takahiro Waki
                                  Jul 31 at 0:55






                                • 1




                                  @TakahiroWaki Yes of course, recall that by definition $o(1)=1cdot omega(x)$ with $omega(x)to 0$.
                                  – gimusi
                                  Jul 31 at 5:39














                                up vote
                                2
                                down vote













                                Using l'Hôpital directly is very awkward.



                                The denominator has $x^2$, but it is immediate that
                                $$
                                lim_tto0fracsin3t-sin tt=3-1=2
                                $$
                                Consequently, also
                                $$
                                lim_xto0fracsin(3x^2)-sin(x^2)2x^2=1
                                $$
                                Good! Now we can write our limit in the form
                                $$
                                lim_xto0fraccos x-cos 3x2x^2frac2x^2sin(3x^2)-sin(x^2)
                                $$
                                The first fraction can be easily dealt with:
                                $$
                                lim_xto0fraccos x-cos 3x2x^2=
                                lim_xto0frac3sin3x-sin x4x=
                                lim_xto0frac9cos3x-cos x4=2
                                $$




                                For completeness, a much simpler strategy is using Taylor expansion:
                                $$
                                fraccos x-cos3xsin(3x^2)-sin(x^2)=
                                frac1-x^2/2-1+(3x)^2/2+o(x^2)3x^2-x^2+o(x^2)=
                                frac4+o(1)2+o(1)
                                $$
                                so the limit is $2$.






                                share|cite|improve this answer





















                                • Is this correct $o(1)→0$?
                                  – Takahiro Waki
                                  Jul 31 at 0:55






                                • 1




                                  @TakahiroWaki Yes of course, recall that by definition $o(1)=1cdot omega(x)$ with $omega(x)to 0$.
                                  – gimusi
                                  Jul 31 at 5:39












                                up vote
                                2
                                down vote










                                up vote
                                2
                                down vote









                                Using l'Hôpital directly is very awkward.



                                The denominator has $x^2$, but it is immediate that
                                $$
                                lim_tto0fracsin3t-sin tt=3-1=2
                                $$
                                Consequently, also
                                $$
                                lim_xto0fracsin(3x^2)-sin(x^2)2x^2=1
                                $$
                                Good! Now we can write our limit in the form
                                $$
                                lim_xto0fraccos x-cos 3x2x^2frac2x^2sin(3x^2)-sin(x^2)
                                $$
                                The first fraction can be easily dealt with:
                                $$
                                lim_xto0fraccos x-cos 3x2x^2=
                                lim_xto0frac3sin3x-sin x4x=
                                lim_xto0frac9cos3x-cos x4=2
                                $$




                                For completeness, a much simpler strategy is using Taylor expansion:
                                $$
                                fraccos x-cos3xsin(3x^2)-sin(x^2)=
                                frac1-x^2/2-1+(3x)^2/2+o(x^2)3x^2-x^2+o(x^2)=
                                frac4+o(1)2+o(1)
                                $$
                                so the limit is $2$.






                                share|cite|improve this answer













                                Using l'Hôpital directly is very awkward.



                                The denominator has $x^2$, but it is immediate that
                                $$
                                lim_tto0fracsin3t-sin tt=3-1=2
                                $$
                                Consequently, also
                                $$
                                lim_xto0fracsin(3x^2)-sin(x^2)2x^2=1
                                $$
                                Good! Now we can write our limit in the form
                                $$
                                lim_xto0fraccos x-cos 3x2x^2frac2x^2sin(3x^2)-sin(x^2)
                                $$
                                The first fraction can be easily dealt with:
                                $$
                                lim_xto0fraccos x-cos 3x2x^2=
                                lim_xto0frac3sin3x-sin x4x=
                                lim_xto0frac9cos3x-cos x4=2
                                $$




                                For completeness, a much simpler strategy is using Taylor expansion:
                                $$
                                fraccos x-cos3xsin(3x^2)-sin(x^2)=
                                frac1-x^2/2-1+(3x)^2/2+o(x^2)3x^2-x^2+o(x^2)=
                                frac4+o(1)2+o(1)
                                $$
                                so the limit is $2$.







                                share|cite|improve this answer













                                share|cite|improve this answer



                                share|cite|improve this answer











                                answered Jul 30 at 21:35









                                egreg

                                164k1180187




                                164k1180187











                                • Is this correct $o(1)→0$?
                                  – Takahiro Waki
                                  Jul 31 at 0:55






                                • 1




                                  @TakahiroWaki Yes of course, recall that by definition $o(1)=1cdot omega(x)$ with $omega(x)to 0$.
                                  – gimusi
                                  Jul 31 at 5:39
















                                • Is this correct $o(1)→0$?
                                  – Takahiro Waki
                                  Jul 31 at 0:55






                                • 1




                                  @TakahiroWaki Yes of course, recall that by definition $o(1)=1cdot omega(x)$ with $omega(x)to 0$.
                                  – gimusi
                                  Jul 31 at 5:39















                                Is this correct $o(1)→0$?
                                – Takahiro Waki
                                Jul 31 at 0:55




                                Is this correct $o(1)→0$?
                                – Takahiro Waki
                                Jul 31 at 0:55




                                1




                                1




                                @TakahiroWaki Yes of course, recall that by definition $o(1)=1cdot omega(x)$ with $omega(x)to 0$.
                                – gimusi
                                Jul 31 at 5:39




                                @TakahiroWaki Yes of course, recall that by definition $o(1)=1cdot omega(x)$ with $omega(x)to 0$.
                                – gimusi
                                Jul 31 at 5:39










                                up vote
                                0
                                down vote













                                $$
                                cos x-cos(3x) = cos xleft(sin^2x+3sin^2 xright)
                                $$



                                then



                                $$
                                fraccos x-cos (3x)sin (3x^2)-sin (x^2) = fracx^2x^2cos xleft(fracsin^2x+3sin^2 xsin (3x^2)-sin (x^2)right)=cos xleft(fracleft(fracsin xxright)^2+3left(fracsin xxright)^2frac3sin(3x^2)3x^2-fracsin (x^2)x^2right)
                                $$



                                hence



                                $$
                                lim_xto 0=cos xleft(fracleft(fracsin xxright)^2+3left(fracsin xxright)^2frac3sin(3x^2)3x^2-fracsin (x^2)x^2right) = 1cdotleft(frac1+33-1right) = 2
                                $$






                                share|cite|improve this answer

























                                  up vote
                                  0
                                  down vote













                                  $$
                                  cos x-cos(3x) = cos xleft(sin^2x+3sin^2 xright)
                                  $$



                                  then



                                  $$
                                  fraccos x-cos (3x)sin (3x^2)-sin (x^2) = fracx^2x^2cos xleft(fracsin^2x+3sin^2 xsin (3x^2)-sin (x^2)right)=cos xleft(fracleft(fracsin xxright)^2+3left(fracsin xxright)^2frac3sin(3x^2)3x^2-fracsin (x^2)x^2right)
                                  $$



                                  hence



                                  $$
                                  lim_xto 0=cos xleft(fracleft(fracsin xxright)^2+3left(fracsin xxright)^2frac3sin(3x^2)3x^2-fracsin (x^2)x^2right) = 1cdotleft(frac1+33-1right) = 2
                                  $$






                                  share|cite|improve this answer























                                    up vote
                                    0
                                    down vote










                                    up vote
                                    0
                                    down vote









                                    $$
                                    cos x-cos(3x) = cos xleft(sin^2x+3sin^2 xright)
                                    $$



                                    then



                                    $$
                                    fraccos x-cos (3x)sin (3x^2)-sin (x^2) = fracx^2x^2cos xleft(fracsin^2x+3sin^2 xsin (3x^2)-sin (x^2)right)=cos xleft(fracleft(fracsin xxright)^2+3left(fracsin xxright)^2frac3sin(3x^2)3x^2-fracsin (x^2)x^2right)
                                    $$



                                    hence



                                    $$
                                    lim_xto 0=cos xleft(fracleft(fracsin xxright)^2+3left(fracsin xxright)^2frac3sin(3x^2)3x^2-fracsin (x^2)x^2right) = 1cdotleft(frac1+33-1right) = 2
                                    $$






                                    share|cite|improve this answer













                                    $$
                                    cos x-cos(3x) = cos xleft(sin^2x+3sin^2 xright)
                                    $$



                                    then



                                    $$
                                    fraccos x-cos (3x)sin (3x^2)-sin (x^2) = fracx^2x^2cos xleft(fracsin^2x+3sin^2 xsin (3x^2)-sin (x^2)right)=cos xleft(fracleft(fracsin xxright)^2+3left(fracsin xxright)^2frac3sin(3x^2)3x^2-fracsin (x^2)x^2right)
                                    $$



                                    hence



                                    $$
                                    lim_xto 0=cos xleft(fracleft(fracsin xxright)^2+3left(fracsin xxright)^2frac3sin(3x^2)3x^2-fracsin (x^2)x^2right) = 1cdotleft(frac1+33-1right) = 2
                                    $$







                                    share|cite|improve this answer













                                    share|cite|improve this answer



                                    share|cite|improve this answer











                                    answered Jul 30 at 22:01









                                    Cesareo

                                    5,5912412




                                    5,5912412






















                                         

                                        draft saved


                                        draft discarded


























                                         


                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function ()
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2867375%2fevaluating-lim-x-to0-frac-cos-x-cos-3x-sin-3x2-sin-x2%23new-answer', 'question_page');

                                        );

                                        Post as a guest













































































                                        Comments

                                        Popular posts from this blog

                                        What is the equation of a 3D cone with generalised tilt?

                                        Color the edges and diagonals of a regular polygon

                                        Relationship between determinant of matrix and determinant of adjoint?