Evaluation of a series involving the harmonic number
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Let $textH_n$ denote the n-th harmonic number, does the following sequence have a closed-form ? As an approximation I have got $0.0922514...$
$$ frac32+lim_ntoinfty bigg(sum_k=3^nfrac2k+sqrtk^2-4-textH_nbigg)$$
sequences-and-series zeta-functions eulers-constant euler-sums
add a comment |Â
up vote
0
down vote
favorite
Let $textH_n$ denote the n-th harmonic number, does the following sequence have a closed-form ? As an approximation I have got $0.0922514...$
$$ frac32+lim_ntoinfty bigg(sum_k=3^nfrac2k+sqrtk^2-4-textH_nbigg)$$
sequences-and-series zeta-functions eulers-constant euler-sums
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $textH_n$ denote the n-th harmonic number, does the following sequence have a closed-form ? As an approximation I have got $0.0922514...$
$$ frac32+lim_ntoinfty bigg(sum_k=3^nfrac2k+sqrtk^2-4-textH_nbigg)$$
sequences-and-series zeta-functions eulers-constant euler-sums
Let $textH_n$ denote the n-th harmonic number, does the following sequence have a closed-form ? As an approximation I have got $0.0922514...$
$$ frac32+lim_ntoinfty bigg(sum_k=3^nfrac2k+sqrtk^2-4-textH_nbigg)$$
sequences-and-series zeta-functions eulers-constant euler-sums
asked Jul 19 at 21:43
Kays Tomy
934
934
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
0
down vote
$$S(n)=sum^n_k=3frac2k+sqrtk^2-4=sum^n_k=3frac2k+sqrtk^2-4cdotfrack-sqrtk^2-4k-sqrtk^2-4=frac12sum^n_k=3k-sqrtk^2-4$$ which can be simplified to $$frac12left(fracn(n+1)2-3-sum^n_k=3sqrtk^2-4right)$$
By generalized binomial theorem,
$$beginalign
sum^n_k=3sqrtk^2-4 & = sum^n_k=3ksqrt1-frac4 k^2 \
&=sum^n_k=3ksum^infty_m=0binom1/2m(-4)^mfrac1k^2m \
&=underbracesum^n_k=3k_textwhen m=0+underbrace(-2)sum^n_k=3frac1k_textwhen m=1+sum^n_k=3ksum^infty_m=2binom1/2m(-4)^mfrac1k^2m\
& =fracn(n+1)2-2(H_n-frac52)+sum^n_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1\
endalign
$$
$$S(n)=frac12left(-3+2H_n-5-sum^n_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1right)$$
Therefore,
$$lim_ntoinftyS(n)-H_n=-4-frac12sum^infty_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1$$
You may try to express it in terms of zeta function.
EDIT:
$$binom1/2m(-4)^m=-fracC^2m_m2m-1$$
So, $$lim_ntoinftyS(n)-H_n=-4+frac12sum^infty_k=3sum^infty_m=2fracC^2m_m(2m-1)k^2m-1$$
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
$$S(n)=sum^n_k=3frac2k+sqrtk^2-4=sum^n_k=3frac2k+sqrtk^2-4cdotfrack-sqrtk^2-4k-sqrtk^2-4=frac12sum^n_k=3k-sqrtk^2-4$$ which can be simplified to $$frac12left(fracn(n+1)2-3-sum^n_k=3sqrtk^2-4right)$$
By generalized binomial theorem,
$$beginalign
sum^n_k=3sqrtk^2-4 & = sum^n_k=3ksqrt1-frac4 k^2 \
&=sum^n_k=3ksum^infty_m=0binom1/2m(-4)^mfrac1k^2m \
&=underbracesum^n_k=3k_textwhen m=0+underbrace(-2)sum^n_k=3frac1k_textwhen m=1+sum^n_k=3ksum^infty_m=2binom1/2m(-4)^mfrac1k^2m\
& =fracn(n+1)2-2(H_n-frac52)+sum^n_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1\
endalign
$$
$$S(n)=frac12left(-3+2H_n-5-sum^n_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1right)$$
Therefore,
$$lim_ntoinftyS(n)-H_n=-4-frac12sum^infty_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1$$
You may try to express it in terms of zeta function.
EDIT:
$$binom1/2m(-4)^m=-fracC^2m_m2m-1$$
So, $$lim_ntoinftyS(n)-H_n=-4+frac12sum^infty_k=3sum^infty_m=2fracC^2m_m(2m-1)k^2m-1$$
add a comment |Â
up vote
0
down vote
$$S(n)=sum^n_k=3frac2k+sqrtk^2-4=sum^n_k=3frac2k+sqrtk^2-4cdotfrack-sqrtk^2-4k-sqrtk^2-4=frac12sum^n_k=3k-sqrtk^2-4$$ which can be simplified to $$frac12left(fracn(n+1)2-3-sum^n_k=3sqrtk^2-4right)$$
By generalized binomial theorem,
$$beginalign
sum^n_k=3sqrtk^2-4 & = sum^n_k=3ksqrt1-frac4 k^2 \
&=sum^n_k=3ksum^infty_m=0binom1/2m(-4)^mfrac1k^2m \
&=underbracesum^n_k=3k_textwhen m=0+underbrace(-2)sum^n_k=3frac1k_textwhen m=1+sum^n_k=3ksum^infty_m=2binom1/2m(-4)^mfrac1k^2m\
& =fracn(n+1)2-2(H_n-frac52)+sum^n_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1\
endalign
$$
$$S(n)=frac12left(-3+2H_n-5-sum^n_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1right)$$
Therefore,
$$lim_ntoinftyS(n)-H_n=-4-frac12sum^infty_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1$$
You may try to express it in terms of zeta function.
EDIT:
$$binom1/2m(-4)^m=-fracC^2m_m2m-1$$
So, $$lim_ntoinftyS(n)-H_n=-4+frac12sum^infty_k=3sum^infty_m=2fracC^2m_m(2m-1)k^2m-1$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
$$S(n)=sum^n_k=3frac2k+sqrtk^2-4=sum^n_k=3frac2k+sqrtk^2-4cdotfrack-sqrtk^2-4k-sqrtk^2-4=frac12sum^n_k=3k-sqrtk^2-4$$ which can be simplified to $$frac12left(fracn(n+1)2-3-sum^n_k=3sqrtk^2-4right)$$
By generalized binomial theorem,
$$beginalign
sum^n_k=3sqrtk^2-4 & = sum^n_k=3ksqrt1-frac4 k^2 \
&=sum^n_k=3ksum^infty_m=0binom1/2m(-4)^mfrac1k^2m \
&=underbracesum^n_k=3k_textwhen m=0+underbrace(-2)sum^n_k=3frac1k_textwhen m=1+sum^n_k=3ksum^infty_m=2binom1/2m(-4)^mfrac1k^2m\
& =fracn(n+1)2-2(H_n-frac52)+sum^n_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1\
endalign
$$
$$S(n)=frac12left(-3+2H_n-5-sum^n_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1right)$$
Therefore,
$$lim_ntoinftyS(n)-H_n=-4-frac12sum^infty_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1$$
You may try to express it in terms of zeta function.
EDIT:
$$binom1/2m(-4)^m=-fracC^2m_m2m-1$$
So, $$lim_ntoinftyS(n)-H_n=-4+frac12sum^infty_k=3sum^infty_m=2fracC^2m_m(2m-1)k^2m-1$$
$$S(n)=sum^n_k=3frac2k+sqrtk^2-4=sum^n_k=3frac2k+sqrtk^2-4cdotfrack-sqrtk^2-4k-sqrtk^2-4=frac12sum^n_k=3k-sqrtk^2-4$$ which can be simplified to $$frac12left(fracn(n+1)2-3-sum^n_k=3sqrtk^2-4right)$$
By generalized binomial theorem,
$$beginalign
sum^n_k=3sqrtk^2-4 & = sum^n_k=3ksqrt1-frac4 k^2 \
&=sum^n_k=3ksum^infty_m=0binom1/2m(-4)^mfrac1k^2m \
&=underbracesum^n_k=3k_textwhen m=0+underbrace(-2)sum^n_k=3frac1k_textwhen m=1+sum^n_k=3ksum^infty_m=2binom1/2m(-4)^mfrac1k^2m\
& =fracn(n+1)2-2(H_n-frac52)+sum^n_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1\
endalign
$$
$$S(n)=frac12left(-3+2H_n-5-sum^n_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1right)$$
Therefore,
$$lim_ntoinftyS(n)-H_n=-4-frac12sum^infty_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1$$
You may try to express it in terms of zeta function.
EDIT:
$$binom1/2m(-4)^m=-fracC^2m_m2m-1$$
So, $$lim_ntoinftyS(n)-H_n=-4+frac12sum^infty_k=3sum^infty_m=2fracC^2m_m(2m-1)k^2m-1$$
answered Jul 20 at 4:04
Szeto
4,1731521
4,1731521
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2857071%2fevaluation-of-a-series-involving-the-harmonic-number%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password