Evaluation of a series involving the harmonic number

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite
1












Let $textH_n$ denote the n-th harmonic number, does the following sequence have a closed-form ? As an approximation I have got $0.0922514...$
$$ frac32+lim_ntoinfty bigg(sum_k=3^nfrac2k+sqrtk^2-4-textH_nbigg)$$







share|cite|improve this question























    up vote
    0
    down vote

    favorite
    1












    Let $textH_n$ denote the n-th harmonic number, does the following sequence have a closed-form ? As an approximation I have got $0.0922514...$
    $$ frac32+lim_ntoinfty bigg(sum_k=3^nfrac2k+sqrtk^2-4-textH_nbigg)$$







    share|cite|improve this question





















      up vote
      0
      down vote

      favorite
      1









      up vote
      0
      down vote

      favorite
      1






      1





      Let $textH_n$ denote the n-th harmonic number, does the following sequence have a closed-form ? As an approximation I have got $0.0922514...$
      $$ frac32+lim_ntoinfty bigg(sum_k=3^nfrac2k+sqrtk^2-4-textH_nbigg)$$







      share|cite|improve this question











      Let $textH_n$ denote the n-th harmonic number, does the following sequence have a closed-form ? As an approximation I have got $0.0922514...$
      $$ frac32+lim_ntoinfty bigg(sum_k=3^nfrac2k+sqrtk^2-4-textH_nbigg)$$









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked Jul 19 at 21:43









      Kays Tomy

      934




      934




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          0
          down vote













          $$S(n)=sum^n_k=3frac2k+sqrtk^2-4=sum^n_k=3frac2k+sqrtk^2-4cdotfrack-sqrtk^2-4k-sqrtk^2-4=frac12sum^n_k=3k-sqrtk^2-4$$ which can be simplified to $$frac12left(fracn(n+1)2-3-sum^n_k=3sqrtk^2-4right)$$



          By generalized binomial theorem,



          $$beginalign
          sum^n_k=3sqrtk^2-4 & = sum^n_k=3ksqrt1-frac4 k^2 \
          &=sum^n_k=3ksum^infty_m=0binom1/2m(-4)^mfrac1k^2m \
          &=underbracesum^n_k=3k_textwhen m=0+underbrace(-2)sum^n_k=3frac1k_textwhen m=1+sum^n_k=3ksum^infty_m=2binom1/2m(-4)^mfrac1k^2m\
          & =fracn(n+1)2-2(H_n-frac52)+sum^n_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1\
          endalign
          $$



          $$S(n)=frac12left(-3+2H_n-5-sum^n_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1right)$$



          Therefore,
          $$lim_ntoinftyS(n)-H_n=-4-frac12sum^infty_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1$$



          You may try to express it in terms of zeta function.



          EDIT:
          $$binom1/2m(-4)^m=-fracC^2m_m2m-1$$
          So, $$lim_ntoinftyS(n)-H_n=-4+frac12sum^infty_k=3sum^infty_m=2fracC^2m_m(2m-1)k^2m-1$$






          share|cite|improve this answer





















            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );








             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2857071%2fevaluation-of-a-series-involving-the-harmonic-number%23new-answer', 'question_page');

            );

            Post as a guest






























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            0
            down vote













            $$S(n)=sum^n_k=3frac2k+sqrtk^2-4=sum^n_k=3frac2k+sqrtk^2-4cdotfrack-sqrtk^2-4k-sqrtk^2-4=frac12sum^n_k=3k-sqrtk^2-4$$ which can be simplified to $$frac12left(fracn(n+1)2-3-sum^n_k=3sqrtk^2-4right)$$



            By generalized binomial theorem,



            $$beginalign
            sum^n_k=3sqrtk^2-4 & = sum^n_k=3ksqrt1-frac4 k^2 \
            &=sum^n_k=3ksum^infty_m=0binom1/2m(-4)^mfrac1k^2m \
            &=underbracesum^n_k=3k_textwhen m=0+underbrace(-2)sum^n_k=3frac1k_textwhen m=1+sum^n_k=3ksum^infty_m=2binom1/2m(-4)^mfrac1k^2m\
            & =fracn(n+1)2-2(H_n-frac52)+sum^n_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1\
            endalign
            $$



            $$S(n)=frac12left(-3+2H_n-5-sum^n_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1right)$$



            Therefore,
            $$lim_ntoinftyS(n)-H_n=-4-frac12sum^infty_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1$$



            You may try to express it in terms of zeta function.



            EDIT:
            $$binom1/2m(-4)^m=-fracC^2m_m2m-1$$
            So, $$lim_ntoinftyS(n)-H_n=-4+frac12sum^infty_k=3sum^infty_m=2fracC^2m_m(2m-1)k^2m-1$$






            share|cite|improve this answer

























              up vote
              0
              down vote













              $$S(n)=sum^n_k=3frac2k+sqrtk^2-4=sum^n_k=3frac2k+sqrtk^2-4cdotfrack-sqrtk^2-4k-sqrtk^2-4=frac12sum^n_k=3k-sqrtk^2-4$$ which can be simplified to $$frac12left(fracn(n+1)2-3-sum^n_k=3sqrtk^2-4right)$$



              By generalized binomial theorem,



              $$beginalign
              sum^n_k=3sqrtk^2-4 & = sum^n_k=3ksqrt1-frac4 k^2 \
              &=sum^n_k=3ksum^infty_m=0binom1/2m(-4)^mfrac1k^2m \
              &=underbracesum^n_k=3k_textwhen m=0+underbrace(-2)sum^n_k=3frac1k_textwhen m=1+sum^n_k=3ksum^infty_m=2binom1/2m(-4)^mfrac1k^2m\
              & =fracn(n+1)2-2(H_n-frac52)+sum^n_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1\
              endalign
              $$



              $$S(n)=frac12left(-3+2H_n-5-sum^n_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1right)$$



              Therefore,
              $$lim_ntoinftyS(n)-H_n=-4-frac12sum^infty_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1$$



              You may try to express it in terms of zeta function.



              EDIT:
              $$binom1/2m(-4)^m=-fracC^2m_m2m-1$$
              So, $$lim_ntoinftyS(n)-H_n=-4+frac12sum^infty_k=3sum^infty_m=2fracC^2m_m(2m-1)k^2m-1$$






              share|cite|improve this answer























                up vote
                0
                down vote










                up vote
                0
                down vote









                $$S(n)=sum^n_k=3frac2k+sqrtk^2-4=sum^n_k=3frac2k+sqrtk^2-4cdotfrack-sqrtk^2-4k-sqrtk^2-4=frac12sum^n_k=3k-sqrtk^2-4$$ which can be simplified to $$frac12left(fracn(n+1)2-3-sum^n_k=3sqrtk^2-4right)$$



                By generalized binomial theorem,



                $$beginalign
                sum^n_k=3sqrtk^2-4 & = sum^n_k=3ksqrt1-frac4 k^2 \
                &=sum^n_k=3ksum^infty_m=0binom1/2m(-4)^mfrac1k^2m \
                &=underbracesum^n_k=3k_textwhen m=0+underbrace(-2)sum^n_k=3frac1k_textwhen m=1+sum^n_k=3ksum^infty_m=2binom1/2m(-4)^mfrac1k^2m\
                & =fracn(n+1)2-2(H_n-frac52)+sum^n_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1\
                endalign
                $$



                $$S(n)=frac12left(-3+2H_n-5-sum^n_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1right)$$



                Therefore,
                $$lim_ntoinftyS(n)-H_n=-4-frac12sum^infty_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1$$



                You may try to express it in terms of zeta function.



                EDIT:
                $$binom1/2m(-4)^m=-fracC^2m_m2m-1$$
                So, $$lim_ntoinftyS(n)-H_n=-4+frac12sum^infty_k=3sum^infty_m=2fracC^2m_m(2m-1)k^2m-1$$






                share|cite|improve this answer













                $$S(n)=sum^n_k=3frac2k+sqrtk^2-4=sum^n_k=3frac2k+sqrtk^2-4cdotfrack-sqrtk^2-4k-sqrtk^2-4=frac12sum^n_k=3k-sqrtk^2-4$$ which can be simplified to $$frac12left(fracn(n+1)2-3-sum^n_k=3sqrtk^2-4right)$$



                By generalized binomial theorem,



                $$beginalign
                sum^n_k=3sqrtk^2-4 & = sum^n_k=3ksqrt1-frac4 k^2 \
                &=sum^n_k=3ksum^infty_m=0binom1/2m(-4)^mfrac1k^2m \
                &=underbracesum^n_k=3k_textwhen m=0+underbrace(-2)sum^n_k=3frac1k_textwhen m=1+sum^n_k=3ksum^infty_m=2binom1/2m(-4)^mfrac1k^2m\
                & =fracn(n+1)2-2(H_n-frac52)+sum^n_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1\
                endalign
                $$



                $$S(n)=frac12left(-3+2H_n-5-sum^n_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1right)$$



                Therefore,
                $$lim_ntoinftyS(n)-H_n=-4-frac12sum^infty_k=3sum^infty_m=2binom1/2m(-4)^mfrac1k^2m-1$$



                You may try to express it in terms of zeta function.



                EDIT:
                $$binom1/2m(-4)^m=-fracC^2m_m2m-1$$
                So, $$lim_ntoinftyS(n)-H_n=-4+frac12sum^infty_k=3sum^infty_m=2fracC^2m_m(2m-1)k^2m-1$$







                share|cite|improve this answer













                share|cite|improve this answer



                share|cite|improve this answer











                answered Jul 20 at 4:04









                Szeto

                4,1731521




                4,1731521






















                     

                    draft saved


                    draft discarded


























                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2857071%2fevaluation-of-a-series-involving-the-harmonic-number%23new-answer', 'question_page');

                    );

                    Post as a guest













































































                    Comments

                    Popular posts from this blog

                    What is the equation of a 3D cone with generalised tilt?

                    Color the edges and diagonals of a regular polygon

                    Relationship between determinant of matrix and determinant of adjoint?