Examine convergence $sum_n=1^infty left( frac1sqrtn - sqrtlnfracn+1n right) $
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
I need some help with following series:
$$sum_n=1^infty left( frac1sqrtn - sqrtlnfracn+1n right)$$
I have no idea how I should modify or compare it with something else.
sequences-and-series convergence
add a comment |Â
up vote
1
down vote
favorite
I need some help with following series:
$$sum_n=1^infty left( frac1sqrtn - sqrtlnfracn+1n right)$$
I have no idea how I should modify or compare it with something else.
sequences-and-series convergence
At first sight, the second term is asymptotic to $1/sqrt n$ and there is cancellation. The next term in the Taylor's development will be of order $n^-3/2$.
– Yves Daoust
Jul 18 at 9:45
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I need some help with following series:
$$sum_n=1^infty left( frac1sqrtn - sqrtlnfracn+1n right)$$
I have no idea how I should modify or compare it with something else.
sequences-and-series convergence
I need some help with following series:
$$sum_n=1^infty left( frac1sqrtn - sqrtlnfracn+1n right)$$
I have no idea how I should modify or compare it with something else.
sequences-and-series convergence
asked Jul 18 at 6:19
Dan We
107
107
At first sight, the second term is asymptotic to $1/sqrt n$ and there is cancellation. The next term in the Taylor's development will be of order $n^-3/2$.
– Yves Daoust
Jul 18 at 9:45
add a comment |Â
At first sight, the second term is asymptotic to $1/sqrt n$ and there is cancellation. The next term in the Taylor's development will be of order $n^-3/2$.
– Yves Daoust
Jul 18 at 9:45
At first sight, the second term is asymptotic to $1/sqrt n$ and there is cancellation. The next term in the Taylor's development will be of order $n^-3/2$.
– Yves Daoust
Jul 18 at 9:45
At first sight, the second term is asymptotic to $1/sqrt n$ and there is cancellation. The next term in the Taylor's development will be of order $n^-3/2$.
– Yves Daoust
Jul 18 at 9:45
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
2
down vote
accepted
$$lnfracn+1n=frac1nleft(1-frac12n+O(n^-2)right)$$
and so
$$sqrtlnfracn+1n=frac1sqrtnleft(1-frac14n+O(n^-2)right).$$
Then
$$frac1sqrt n-sqrtlnfracn+1n=frac14n^3/2+O(n^-5/2).$$
yes of course, I see now thanks
– gimusi
Jul 18 at 6:26
add a comment |Â
up vote
2
down vote
Also, from
$$fracx1+xleq ln(1+x)leq x, forall x>-1$$
we have
$$sqrtfrac1n+1leq sqrtlnleft(1+frac1nright)leq frac1sqrtn$$
or
$$0leq frac1sqrtn-sqrtlnleft(1+frac1nright) leq frac1sqrtn-sqrtfrac1n+1$$
where
$$0leq frac1sqrtn-sqrtfrac1n+1=fracsqrtn+1-sqrtnsqrtn+1sqrtn< fracsqrtn+1-sqrtnn=frac1n(sqrtn+1+sqrtn)< frac12sqrtn^3$$
As a result
$$0leqsumlimits_n=1^infty left( frac1sqrtn - sqrtlnfracn+1n right)<
frac12sumlimits_n=1^inftyfrac1n^frac32$$
which converges, since $frac32>1$.
1
Nice bracketing of the logarithm.
– Yves Daoust
Jul 18 at 9:36
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
$$lnfracn+1n=frac1nleft(1-frac12n+O(n^-2)right)$$
and so
$$sqrtlnfracn+1n=frac1sqrtnleft(1-frac14n+O(n^-2)right).$$
Then
$$frac1sqrt n-sqrtlnfracn+1n=frac14n^3/2+O(n^-5/2).$$
yes of course, I see now thanks
– gimusi
Jul 18 at 6:26
add a comment |Â
up vote
2
down vote
accepted
$$lnfracn+1n=frac1nleft(1-frac12n+O(n^-2)right)$$
and so
$$sqrtlnfracn+1n=frac1sqrtnleft(1-frac14n+O(n^-2)right).$$
Then
$$frac1sqrt n-sqrtlnfracn+1n=frac14n^3/2+O(n^-5/2).$$
yes of course, I see now thanks
– gimusi
Jul 18 at 6:26
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
$$lnfracn+1n=frac1nleft(1-frac12n+O(n^-2)right)$$
and so
$$sqrtlnfracn+1n=frac1sqrtnleft(1-frac14n+O(n^-2)right).$$
Then
$$frac1sqrt n-sqrtlnfracn+1n=frac14n^3/2+O(n^-5/2).$$
$$lnfracn+1n=frac1nleft(1-frac12n+O(n^-2)right)$$
and so
$$sqrtlnfracn+1n=frac1sqrtnleft(1-frac14n+O(n^-2)right).$$
Then
$$frac1sqrt n-sqrtlnfracn+1n=frac14n^3/2+O(n^-5/2).$$
answered Jul 18 at 6:23
Lord Shark the Unknown
85.5k951112
85.5k951112
yes of course, I see now thanks
– gimusi
Jul 18 at 6:26
add a comment |Â
yes of course, I see now thanks
– gimusi
Jul 18 at 6:26
yes of course, I see now thanks
– gimusi
Jul 18 at 6:26
yes of course, I see now thanks
– gimusi
Jul 18 at 6:26
add a comment |Â
up vote
2
down vote
Also, from
$$fracx1+xleq ln(1+x)leq x, forall x>-1$$
we have
$$sqrtfrac1n+1leq sqrtlnleft(1+frac1nright)leq frac1sqrtn$$
or
$$0leq frac1sqrtn-sqrtlnleft(1+frac1nright) leq frac1sqrtn-sqrtfrac1n+1$$
where
$$0leq frac1sqrtn-sqrtfrac1n+1=fracsqrtn+1-sqrtnsqrtn+1sqrtn< fracsqrtn+1-sqrtnn=frac1n(sqrtn+1+sqrtn)< frac12sqrtn^3$$
As a result
$$0leqsumlimits_n=1^infty left( frac1sqrtn - sqrtlnfracn+1n right)<
frac12sumlimits_n=1^inftyfrac1n^frac32$$
which converges, since $frac32>1$.
1
Nice bracketing of the logarithm.
– Yves Daoust
Jul 18 at 9:36
add a comment |Â
up vote
2
down vote
Also, from
$$fracx1+xleq ln(1+x)leq x, forall x>-1$$
we have
$$sqrtfrac1n+1leq sqrtlnleft(1+frac1nright)leq frac1sqrtn$$
or
$$0leq frac1sqrtn-sqrtlnleft(1+frac1nright) leq frac1sqrtn-sqrtfrac1n+1$$
where
$$0leq frac1sqrtn-sqrtfrac1n+1=fracsqrtn+1-sqrtnsqrtn+1sqrtn< fracsqrtn+1-sqrtnn=frac1n(sqrtn+1+sqrtn)< frac12sqrtn^3$$
As a result
$$0leqsumlimits_n=1^infty left( frac1sqrtn - sqrtlnfracn+1n right)<
frac12sumlimits_n=1^inftyfrac1n^frac32$$
which converges, since $frac32>1$.
1
Nice bracketing of the logarithm.
– Yves Daoust
Jul 18 at 9:36
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Also, from
$$fracx1+xleq ln(1+x)leq x, forall x>-1$$
we have
$$sqrtfrac1n+1leq sqrtlnleft(1+frac1nright)leq frac1sqrtn$$
or
$$0leq frac1sqrtn-sqrtlnleft(1+frac1nright) leq frac1sqrtn-sqrtfrac1n+1$$
where
$$0leq frac1sqrtn-sqrtfrac1n+1=fracsqrtn+1-sqrtnsqrtn+1sqrtn< fracsqrtn+1-sqrtnn=frac1n(sqrtn+1+sqrtn)< frac12sqrtn^3$$
As a result
$$0leqsumlimits_n=1^infty left( frac1sqrtn - sqrtlnfracn+1n right)<
frac12sumlimits_n=1^inftyfrac1n^frac32$$
which converges, since $frac32>1$.
Also, from
$$fracx1+xleq ln(1+x)leq x, forall x>-1$$
we have
$$sqrtfrac1n+1leq sqrtlnleft(1+frac1nright)leq frac1sqrtn$$
or
$$0leq frac1sqrtn-sqrtlnleft(1+frac1nright) leq frac1sqrtn-sqrtfrac1n+1$$
where
$$0leq frac1sqrtn-sqrtfrac1n+1=fracsqrtn+1-sqrtnsqrtn+1sqrtn< fracsqrtn+1-sqrtnn=frac1n(sqrtn+1+sqrtn)< frac12sqrtn^3$$
As a result
$$0leqsumlimits_n=1^infty left( frac1sqrtn - sqrtlnfracn+1n right)<
frac12sumlimits_n=1^inftyfrac1n^frac32$$
which converges, since $frac32>1$.
answered Jul 18 at 8:04
rtybase
8,86721433
8,86721433
1
Nice bracketing of the logarithm.
– Yves Daoust
Jul 18 at 9:36
add a comment |Â
1
Nice bracketing of the logarithm.
– Yves Daoust
Jul 18 at 9:36
1
1
Nice bracketing of the logarithm.
– Yves Daoust
Jul 18 at 9:36
Nice bracketing of the logarithm.
– Yves Daoust
Jul 18 at 9:36
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2855271%2fexamine-convergence-sum-n-1-infty-left-frac1-sqrtn-sqrt-ln%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
At first sight, the second term is asymptotic to $1/sqrt n$ and there is cancellation. The next term in the Taylor's development will be of order $n^-3/2$.
– Yves Daoust
Jul 18 at 9:45