How calculate $quad int_0^infty fraccos(x^2)1+x^2 dx$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
3
down vote

favorite
2












How calculate
$$int_0^infty fraccos(x^2)1+x^2;dx$$
$mathbf My Attempt$



I tried introducing a new parameter and differentiating twice like this:
$$I(a)=int_0^infty fraccos(ax^2)1+x^2;dx quad Rightarrow$$
$$I^''(a)+I(a)=fracsqrtpisqrt2a^frac-12+fracsqrtpi2sqrt2a^frac-32$$
I'm unable to come up with a particular solution for this differential equation.



I tried using a double integral like this:
$$int_0^infty e^-y(1+x^2); dy = frac11+x^2 quadRightarrow$$
$$int_0^infty int_0^infty cos(x^2); e^-y(1+x^2); dy,dx = int_0^inftyfraccos(x^2)1+x^2; dx$$
But this wasn't that useful.



Result by Wolfram (Mathematica): $$-frac12 pi left[sin (1) left(Sleft(sqrtfrac2pi right)-Cleft(sqrtfrac2pi right)right)+cos (1) left(Cleft(sqrtfrac2pi right)+Sleft(sqrtfrac2pi right)-1right)right] $$



Any hint? (I'm not familiar with the Residue Theorem)







share|cite|improve this question





















  • Mathematica gives: $-frac12 pi left(sin (1) left(Sleft(sqrtfrac2pi right)-Cleft(sqrtfrac2pi right)right)+cos (1) left(Cleft(sqrtfrac2pi right)+Sleft(sqrtfrac2pi right)-1right)right)$
    – David G. Stork
    Jul 20 at 5:08










  • @DavidG.Stork, Yeah, I've got the same result by Wolfram Alpha. So, I tried to convert to Fresnel integral but in vain.
    – Wolfdale
    Jul 20 at 5:11










  • Fresnel integrals cannot be simplified, in general.
    – David G. Stork
    Jul 20 at 5:12











  • @DavidG.Stork but maybe a combination of them can be
    – mathworker21
    Jul 20 at 5:12










  • I strongly doubt it... otherwise I would likely have seen some identities to that effect. But I cannot prove this assertion without extensive effort.
    – David G. Stork
    Jul 20 at 5:14














up vote
3
down vote

favorite
2












How calculate
$$int_0^infty fraccos(x^2)1+x^2;dx$$
$mathbf My Attempt$



I tried introducing a new parameter and differentiating twice like this:
$$I(a)=int_0^infty fraccos(ax^2)1+x^2;dx quad Rightarrow$$
$$I^''(a)+I(a)=fracsqrtpisqrt2a^frac-12+fracsqrtpi2sqrt2a^frac-32$$
I'm unable to come up with a particular solution for this differential equation.



I tried using a double integral like this:
$$int_0^infty e^-y(1+x^2); dy = frac11+x^2 quadRightarrow$$
$$int_0^infty int_0^infty cos(x^2); e^-y(1+x^2); dy,dx = int_0^inftyfraccos(x^2)1+x^2; dx$$
But this wasn't that useful.



Result by Wolfram (Mathematica): $$-frac12 pi left[sin (1) left(Sleft(sqrtfrac2pi right)-Cleft(sqrtfrac2pi right)right)+cos (1) left(Cleft(sqrtfrac2pi right)+Sleft(sqrtfrac2pi right)-1right)right] $$



Any hint? (I'm not familiar with the Residue Theorem)







share|cite|improve this question





















  • Mathematica gives: $-frac12 pi left(sin (1) left(Sleft(sqrtfrac2pi right)-Cleft(sqrtfrac2pi right)right)+cos (1) left(Cleft(sqrtfrac2pi right)+Sleft(sqrtfrac2pi right)-1right)right)$
    – David G. Stork
    Jul 20 at 5:08










  • @DavidG.Stork, Yeah, I've got the same result by Wolfram Alpha. So, I tried to convert to Fresnel integral but in vain.
    – Wolfdale
    Jul 20 at 5:11










  • Fresnel integrals cannot be simplified, in general.
    – David G. Stork
    Jul 20 at 5:12











  • @DavidG.Stork but maybe a combination of them can be
    – mathworker21
    Jul 20 at 5:12










  • I strongly doubt it... otherwise I would likely have seen some identities to that effect. But I cannot prove this assertion without extensive effort.
    – David G. Stork
    Jul 20 at 5:14












up vote
3
down vote

favorite
2









up vote
3
down vote

favorite
2






2





How calculate
$$int_0^infty fraccos(x^2)1+x^2;dx$$
$mathbf My Attempt$



I tried introducing a new parameter and differentiating twice like this:
$$I(a)=int_0^infty fraccos(ax^2)1+x^2;dx quad Rightarrow$$
$$I^''(a)+I(a)=fracsqrtpisqrt2a^frac-12+fracsqrtpi2sqrt2a^frac-32$$
I'm unable to come up with a particular solution for this differential equation.



I tried using a double integral like this:
$$int_0^infty e^-y(1+x^2); dy = frac11+x^2 quadRightarrow$$
$$int_0^infty int_0^infty cos(x^2); e^-y(1+x^2); dy,dx = int_0^inftyfraccos(x^2)1+x^2; dx$$
But this wasn't that useful.



Result by Wolfram (Mathematica): $$-frac12 pi left[sin (1) left(Sleft(sqrtfrac2pi right)-Cleft(sqrtfrac2pi right)right)+cos (1) left(Cleft(sqrtfrac2pi right)+Sleft(sqrtfrac2pi right)-1right)right] $$



Any hint? (I'm not familiar with the Residue Theorem)







share|cite|improve this question













How calculate
$$int_0^infty fraccos(x^2)1+x^2;dx$$
$mathbf My Attempt$



I tried introducing a new parameter and differentiating twice like this:
$$I(a)=int_0^infty fraccos(ax^2)1+x^2;dx quad Rightarrow$$
$$I^''(a)+I(a)=fracsqrtpisqrt2a^frac-12+fracsqrtpi2sqrt2a^frac-32$$
I'm unable to come up with a particular solution for this differential equation.



I tried using a double integral like this:
$$int_0^infty e^-y(1+x^2); dy = frac11+x^2 quadRightarrow$$
$$int_0^infty int_0^infty cos(x^2); e^-y(1+x^2); dy,dx = int_0^inftyfraccos(x^2)1+x^2; dx$$
But this wasn't that useful.



Result by Wolfram (Mathematica): $$-frac12 pi left[sin (1) left(Sleft(sqrtfrac2pi right)-Cleft(sqrtfrac2pi right)right)+cos (1) left(Cleft(sqrtfrac2pi right)+Sleft(sqrtfrac2pi right)-1right)right] $$



Any hint? (I'm not familiar with the Residue Theorem)









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 20 at 6:18
























asked Jul 20 at 4:57









Wolfdale

24919




24919











  • Mathematica gives: $-frac12 pi left(sin (1) left(Sleft(sqrtfrac2pi right)-Cleft(sqrtfrac2pi right)right)+cos (1) left(Cleft(sqrtfrac2pi right)+Sleft(sqrtfrac2pi right)-1right)right)$
    – David G. Stork
    Jul 20 at 5:08










  • @DavidG.Stork, Yeah, I've got the same result by Wolfram Alpha. So, I tried to convert to Fresnel integral but in vain.
    – Wolfdale
    Jul 20 at 5:11










  • Fresnel integrals cannot be simplified, in general.
    – David G. Stork
    Jul 20 at 5:12











  • @DavidG.Stork but maybe a combination of them can be
    – mathworker21
    Jul 20 at 5:12










  • I strongly doubt it... otherwise I would likely have seen some identities to that effect. But I cannot prove this assertion without extensive effort.
    – David G. Stork
    Jul 20 at 5:14
















  • Mathematica gives: $-frac12 pi left(sin (1) left(Sleft(sqrtfrac2pi right)-Cleft(sqrtfrac2pi right)right)+cos (1) left(Cleft(sqrtfrac2pi right)+Sleft(sqrtfrac2pi right)-1right)right)$
    – David G. Stork
    Jul 20 at 5:08










  • @DavidG.Stork, Yeah, I've got the same result by Wolfram Alpha. So, I tried to convert to Fresnel integral but in vain.
    – Wolfdale
    Jul 20 at 5:11










  • Fresnel integrals cannot be simplified, in general.
    – David G. Stork
    Jul 20 at 5:12











  • @DavidG.Stork but maybe a combination of them can be
    – mathworker21
    Jul 20 at 5:12










  • I strongly doubt it... otherwise I would likely have seen some identities to that effect. But I cannot prove this assertion without extensive effort.
    – David G. Stork
    Jul 20 at 5:14















Mathematica gives: $-frac12 pi left(sin (1) left(Sleft(sqrtfrac2pi right)-Cleft(sqrtfrac2pi right)right)+cos (1) left(Cleft(sqrtfrac2pi right)+Sleft(sqrtfrac2pi right)-1right)right)$
– David G. Stork
Jul 20 at 5:08




Mathematica gives: $-frac12 pi left(sin (1) left(Sleft(sqrtfrac2pi right)-Cleft(sqrtfrac2pi right)right)+cos (1) left(Cleft(sqrtfrac2pi right)+Sleft(sqrtfrac2pi right)-1right)right)$
– David G. Stork
Jul 20 at 5:08












@DavidG.Stork, Yeah, I've got the same result by Wolfram Alpha. So, I tried to convert to Fresnel integral but in vain.
– Wolfdale
Jul 20 at 5:11




@DavidG.Stork, Yeah, I've got the same result by Wolfram Alpha. So, I tried to convert to Fresnel integral but in vain.
– Wolfdale
Jul 20 at 5:11












Fresnel integrals cannot be simplified, in general.
– David G. Stork
Jul 20 at 5:12





Fresnel integrals cannot be simplified, in general.
– David G. Stork
Jul 20 at 5:12













@DavidG.Stork but maybe a combination of them can be
– mathworker21
Jul 20 at 5:12




@DavidG.Stork but maybe a combination of them can be
– mathworker21
Jul 20 at 5:12












I strongly doubt it... otherwise I would likely have seen some identities to that effect. But I cannot prove this assertion without extensive effort.
– David G. Stork
Jul 20 at 5:14




I strongly doubt it... otherwise I would likely have seen some identities to that effect. But I cannot prove this assertion without extensive effort.
– David G. Stork
Jul 20 at 5:14










3 Answers
3






active

oldest

votes

















up vote
2
down vote



accepted










Using the complex representation makes the problem solvable with a first order ODE.



$$I(a)=int_0^inftyfrace^iax^2x^2+1dx,$$



$$I'(a)=iint_0^infty x^2frace^iax^2x^2+1dx,$$



$$I'(a)+iI(a)=iint_0^infty e^iax^2dx=wa^-1/2,$$ where $w$ is a complex constant (namely $(i-1)sqrtpi/8$).



Then by means of an integrating factor,



$$(I'(a)+iI(a))e^ia=(I(a)e^ia)'=wa^-1/2e^ia$$



and integrating from $a=0$ to $1$,



$$I(a)e^ia-I(0)=wint_0^1a^-1/2e^iada=2wint_0^1e^ib^2db=2w(C(1)+iS(1)).$$



Finally,



$$I(a)=left(2w(C(1)+iS(1))+I(0)right)e^-i$$ of which you take the real part. (With $I(0)=pi/2$.)




Note that we have been using the Fresnel integral without the $pi/2$ factor in its definition, and this answer coincides with those of the CAS softwares.






share|cite|improve this answer























  • Brilliant, actually I went the same way but found the calculations complicated and stopped. Many thx.
    – Wolfdale
    Jul 20 at 17:24










  • In Mathematica, Re[((I-1)Sqrt[Pi/2](Sqrt[Pi/2]FresnelC[Sqrt[2/Pi]] + I Sqrt[Pi/2]FresnelS[Sqrt[2/Pi]])+Pi/2)Exp[-I]] gives the correct result
    – robjohn♦
    Jul 21 at 16:56

















up vote
1
down vote













With a bit of contour integration, we can speed up the convergence:
$$newcommandReoperatornameRe
beginalign
int_0^inftyfraccosleft(x^2right)1+x^2,mathrmdx
&=Releft(int_0^inftyfrace^ix^21+x^2,mathrmdxright)tag1\
&=Releft(frac1+isqrt2int_0^inftyfrace^-x^21+ix^2,mathrmdxright)tag2\
&=frac1sqrt2int_0^inftyfrac1+x^21+x^4e^-x^2,mathrmdxtag3
endalign
$$
Explanation:

$(1)$: $cosleft(x^2right)=Releft(e^ix^2right)$

$(2)$: substitute $xmapstofrac1+isqrt2x$

$phantom(2)text:$ change contour from $frac1-isqrt2[0,infty]$ to $[0,infty]$ using Cauchy Integral Theorem

$(3)$: extract real part



Numerically integrating $(3)$ gives
$$
frac1sqrt2int_0^inftyfrac1+x^21+x^4e^-x^2,mathrmdx
=0.65280425451173388408tag4
$$




$$
beginalign
int_0^inftyfraccosleft(x^2right)1+x^2,mathrmdx
&=Releft(e^ipi/4int_0^inftyfrace^-x^21+ix^2,mathrmdxright)tag5\
&=Releft(e^i3pi/4e^-iint_0^inftyfrace^i-x^2i-x^2,mathrmdxright)tag6\
endalign
$$
Explanation:

$(5)$: copy $(2)$

$(6)$: multiply by $1=left(e^ipi/2e^-iright)left(e^i/iright)$



Define
$$
f(a)=Releft(e^i3pi/4e^-iint_0^inftyfrace^aleft(i-x^2right)i-x^2,mathrmdxright)tag7
$$
Then
$$newcommandResoperatorname*Res
beginalign
f(0)
&=Releft(e^i3pi/4e^-iint_0^inftyfrac1i-x^2,mathrmdxright)\
&=Releft(e^i3pi/4e^-ifrac12int_-infty^inftyfrac1i-x^2,mathrmdxright)\
&=Releft(e^i3pi/4e^-ipi iRes_z=e^ipi/4left(frac1i-z^2right)right)\
&=Releft(fracpi2e^-iright)tag8
endalign
$$
Taking the derivative of $(7)$, we have
$$
beginalign
f'(a)
&=Releft(e^i3pi/4e^-iint_0^infty e^aleft(i-x^2right),mathrmdxright)\
&=Releft(e^i3pi/4e^-ie^iaint_0^infty e^-ax^2,mathrmdxright)\
&=Releft(e^i3pi/4e^-ie^iasqrtfracpi4aright)tag9
endalign
$$
Integrating $(9)$ gives
$$newcommanderfoperatornameerfnewcommanderfcoperatornameerfc
beginalign
f(1)-f(0)
&=Releft(fracsqrtpi2e^i3pi/4e^-iint_0^1frace^iasqrta,mathrmdaright)tag10\
&=Releft(sqrtpi e^i3pi/4e^-iint_0^1e^ia^2,mathrmdaright)tag11\
&=Releft(sqrtpi e^ipie^-iint_0^e^-ipi/4e^-a^2,mathrmdaright)tag12\[3pt]
&=Releft(-fracpi2e^-ioperatornameerfleft(e^-ipi/4right)right)tag13
endalign
$$
Explanation:

$(10)$: integrate $(9)$ from $0$ to $1$

$(11)$: substitute $amapsto a^2$

$(12)$: substitute $amapsto ae^ipi/4$

$(13)$: use $erf$



Combining $(6)$, $(7)$, $(8)$, $(13)$, and $erfc(x)=1-erf(x)$, yields
$$
beginalign
int_0^inftyfraccosleft(x^2right)1+x^2,mathrmdx
&=Releft(fracpi2e^-ierfcleft(e^-ipi/4right)right)\
&=0.65280425451173388408tag14
endalign
$$
Thankfully, $(4)$ and $(14)$ agree.






share|cite|improve this answer




























    up vote
    1
    down vote













    $$J=int^infty_0fraccos(x^2)1+x^2dx=Reint^infty_0frace^ix^21+x^2dx=Re,, e^-iunderbraceint^infty_0frace^ia(x^2+1)1+x^2dx_=I(a)$$ where $a=1$.



    Restrict $a$ to be real non-negative.



    $$I'(a)=ie^iaint^infty_0e^iax^2dx$$



    By the substitution $-u=iax^2$, we get
    $$I'(a)=frac12ie^iasqrtfraciaint^-iinfty_0u^-1/2e^-udu=fraci^3/22frace^iasqrt asqrtpi$$



    Let $k=fraci^3/22sqrtpi$.



    $$I(a)=kintfrace^iasqrt ada$$



    By the substitution $ia=-v$, we get
    $$I(a)=ksqrt iintfrace^-vsqrt vdv=-fracsqrtpi2gamma(frac12,v)+C=-fracsqrtpi2gamma(frac12,-ia)+C$$



    Because $I(0)=fracpi2$, so $C=fracpi2$.



    Since $gamma(frac12,x)=sqrtpitexterf(sqrt x)$,
    $$I(a)=-fracpi2texterf(sqrt -isqrt a)+fracpi2=fracpi2texterfc(overbracee^-pi i/4^textprincipal valuecdotsqrt a)$$



    As a result, $$J=Re e^-iI(1)=fracpi2,Re,, e^-itexterfc(e^-pi i/4)$$



    Note that $I(1)=-fracsqrtpi2gamma(frac12,-i)+fracpi2$ is wrong if you calculate it using Wolfram Alpha. However, an equivalent expression $I(1) = fracpi2texterfc(e^-pi i/4)$ is correct as calculated by Wolfram Alpha. I don't know why $-fracsqrtpi2gamma(frac12,-i)+fracpi2ne fracpi2texterfc(e^-pi i/4)$. I suspect this might be a bug of Wolfy.






    share|cite|improve this answer























    • many thx for your solution
      – Wolfdale
      Jul 20 at 17:23










    • This answer gives $1.04460550032123928561$, which is not the same as what I got in two different ways. I also computed the original integral numerically and my answer checks out. The problem is probably minor since it appears the argument to erfc is negated.
      – robjohn♦
      Jul 21 at 14:02











    • @robjohn I edited my answer. But I still can't figure out why Wolfy does not produce the correct result with the lower gamma function. Moreover, I don't know using what argument would make the lower gamma function to evaluate properly.
      – Szeto
      Jul 21 at 15:04










    • @Szeto: In Mathematica, Sqrt[Pi]/2(Sqrt[Pi]-Gamma[1/2,-I]) gives the same numerical result as Pi/2Erf[Exp[-I Pi/4]]
      – robjohn♦
      Jul 21 at 15:51











    • @robjohn I used the online version of WA. Do you think that will work also?
      – Szeto
      Jul 21 at 15:55










    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2857285%2fhow-calculate-quad-int-0-infty-frac-cosx21x2-dx%23new-answer', 'question_page');

    );

    Post as a guest






























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    2
    down vote



    accepted










    Using the complex representation makes the problem solvable with a first order ODE.



    $$I(a)=int_0^inftyfrace^iax^2x^2+1dx,$$



    $$I'(a)=iint_0^infty x^2frace^iax^2x^2+1dx,$$



    $$I'(a)+iI(a)=iint_0^infty e^iax^2dx=wa^-1/2,$$ where $w$ is a complex constant (namely $(i-1)sqrtpi/8$).



    Then by means of an integrating factor,



    $$(I'(a)+iI(a))e^ia=(I(a)e^ia)'=wa^-1/2e^ia$$



    and integrating from $a=0$ to $1$,



    $$I(a)e^ia-I(0)=wint_0^1a^-1/2e^iada=2wint_0^1e^ib^2db=2w(C(1)+iS(1)).$$



    Finally,



    $$I(a)=left(2w(C(1)+iS(1))+I(0)right)e^-i$$ of which you take the real part. (With $I(0)=pi/2$.)




    Note that we have been using the Fresnel integral without the $pi/2$ factor in its definition, and this answer coincides with those of the CAS softwares.






    share|cite|improve this answer























    • Brilliant, actually I went the same way but found the calculations complicated and stopped. Many thx.
      – Wolfdale
      Jul 20 at 17:24










    • In Mathematica, Re[((I-1)Sqrt[Pi/2](Sqrt[Pi/2]FresnelC[Sqrt[2/Pi]] + I Sqrt[Pi/2]FresnelS[Sqrt[2/Pi]])+Pi/2)Exp[-I]] gives the correct result
      – robjohn♦
      Jul 21 at 16:56














    up vote
    2
    down vote



    accepted










    Using the complex representation makes the problem solvable with a first order ODE.



    $$I(a)=int_0^inftyfrace^iax^2x^2+1dx,$$



    $$I'(a)=iint_0^infty x^2frace^iax^2x^2+1dx,$$



    $$I'(a)+iI(a)=iint_0^infty e^iax^2dx=wa^-1/2,$$ where $w$ is a complex constant (namely $(i-1)sqrtpi/8$).



    Then by means of an integrating factor,



    $$(I'(a)+iI(a))e^ia=(I(a)e^ia)'=wa^-1/2e^ia$$



    and integrating from $a=0$ to $1$,



    $$I(a)e^ia-I(0)=wint_0^1a^-1/2e^iada=2wint_0^1e^ib^2db=2w(C(1)+iS(1)).$$



    Finally,



    $$I(a)=left(2w(C(1)+iS(1))+I(0)right)e^-i$$ of which you take the real part. (With $I(0)=pi/2$.)




    Note that we have been using the Fresnel integral without the $pi/2$ factor in its definition, and this answer coincides with those of the CAS softwares.






    share|cite|improve this answer























    • Brilliant, actually I went the same way but found the calculations complicated and stopped. Many thx.
      – Wolfdale
      Jul 20 at 17:24










    • In Mathematica, Re[((I-1)Sqrt[Pi/2](Sqrt[Pi/2]FresnelC[Sqrt[2/Pi]] + I Sqrt[Pi/2]FresnelS[Sqrt[2/Pi]])+Pi/2)Exp[-I]] gives the correct result
      – robjohn♦
      Jul 21 at 16:56












    up vote
    2
    down vote



    accepted







    up vote
    2
    down vote



    accepted






    Using the complex representation makes the problem solvable with a first order ODE.



    $$I(a)=int_0^inftyfrace^iax^2x^2+1dx,$$



    $$I'(a)=iint_0^infty x^2frace^iax^2x^2+1dx,$$



    $$I'(a)+iI(a)=iint_0^infty e^iax^2dx=wa^-1/2,$$ where $w$ is a complex constant (namely $(i-1)sqrtpi/8$).



    Then by means of an integrating factor,



    $$(I'(a)+iI(a))e^ia=(I(a)e^ia)'=wa^-1/2e^ia$$



    and integrating from $a=0$ to $1$,



    $$I(a)e^ia-I(0)=wint_0^1a^-1/2e^iada=2wint_0^1e^ib^2db=2w(C(1)+iS(1)).$$



    Finally,



    $$I(a)=left(2w(C(1)+iS(1))+I(0)right)e^-i$$ of which you take the real part. (With $I(0)=pi/2$.)




    Note that we have been using the Fresnel integral without the $pi/2$ factor in its definition, and this answer coincides with those of the CAS softwares.






    share|cite|improve this answer















    Using the complex representation makes the problem solvable with a first order ODE.



    $$I(a)=int_0^inftyfrace^iax^2x^2+1dx,$$



    $$I'(a)=iint_0^infty x^2frace^iax^2x^2+1dx,$$



    $$I'(a)+iI(a)=iint_0^infty e^iax^2dx=wa^-1/2,$$ where $w$ is a complex constant (namely $(i-1)sqrtpi/8$).



    Then by means of an integrating factor,



    $$(I'(a)+iI(a))e^ia=(I(a)e^ia)'=wa^-1/2e^ia$$



    and integrating from $a=0$ to $1$,



    $$I(a)e^ia-I(0)=wint_0^1a^-1/2e^iada=2wint_0^1e^ib^2db=2w(C(1)+iS(1)).$$



    Finally,



    $$I(a)=left(2w(C(1)+iS(1))+I(0)right)e^-i$$ of which you take the real part. (With $I(0)=pi/2$.)




    Note that we have been using the Fresnel integral without the $pi/2$ factor in its definition, and this answer coincides with those of the CAS softwares.







    share|cite|improve this answer















    share|cite|improve this answer



    share|cite|improve this answer








    edited Jul 20 at 7:30


























    answered Jul 20 at 7:18









    Yves Daoust

    111k665204




    111k665204











    • Brilliant, actually I went the same way but found the calculations complicated and stopped. Many thx.
      – Wolfdale
      Jul 20 at 17:24










    • In Mathematica, Re[((I-1)Sqrt[Pi/2](Sqrt[Pi/2]FresnelC[Sqrt[2/Pi]] + I Sqrt[Pi/2]FresnelS[Sqrt[2/Pi]])+Pi/2)Exp[-I]] gives the correct result
      – robjohn♦
      Jul 21 at 16:56
















    • Brilliant, actually I went the same way but found the calculations complicated and stopped. Many thx.
      – Wolfdale
      Jul 20 at 17:24










    • In Mathematica, Re[((I-1)Sqrt[Pi/2](Sqrt[Pi/2]FresnelC[Sqrt[2/Pi]] + I Sqrt[Pi/2]FresnelS[Sqrt[2/Pi]])+Pi/2)Exp[-I]] gives the correct result
      – robjohn♦
      Jul 21 at 16:56















    Brilliant, actually I went the same way but found the calculations complicated and stopped. Many thx.
    – Wolfdale
    Jul 20 at 17:24




    Brilliant, actually I went the same way but found the calculations complicated and stopped. Many thx.
    – Wolfdale
    Jul 20 at 17:24












    In Mathematica, Re[((I-1)Sqrt[Pi/2](Sqrt[Pi/2]FresnelC[Sqrt[2/Pi]] + I Sqrt[Pi/2]FresnelS[Sqrt[2/Pi]])+Pi/2)Exp[-I]] gives the correct result
    – robjohn♦
    Jul 21 at 16:56




    In Mathematica, Re[((I-1)Sqrt[Pi/2](Sqrt[Pi/2]FresnelC[Sqrt[2/Pi]] + I Sqrt[Pi/2]FresnelS[Sqrt[2/Pi]])+Pi/2)Exp[-I]] gives the correct result
    – robjohn♦
    Jul 21 at 16:56










    up vote
    1
    down vote













    With a bit of contour integration, we can speed up the convergence:
    $$newcommandReoperatornameRe
    beginalign
    int_0^inftyfraccosleft(x^2right)1+x^2,mathrmdx
    &=Releft(int_0^inftyfrace^ix^21+x^2,mathrmdxright)tag1\
    &=Releft(frac1+isqrt2int_0^inftyfrace^-x^21+ix^2,mathrmdxright)tag2\
    &=frac1sqrt2int_0^inftyfrac1+x^21+x^4e^-x^2,mathrmdxtag3
    endalign
    $$
    Explanation:

    $(1)$: $cosleft(x^2right)=Releft(e^ix^2right)$

    $(2)$: substitute $xmapstofrac1+isqrt2x$

    $phantom(2)text:$ change contour from $frac1-isqrt2[0,infty]$ to $[0,infty]$ using Cauchy Integral Theorem

    $(3)$: extract real part



    Numerically integrating $(3)$ gives
    $$
    frac1sqrt2int_0^inftyfrac1+x^21+x^4e^-x^2,mathrmdx
    =0.65280425451173388408tag4
    $$




    $$
    beginalign
    int_0^inftyfraccosleft(x^2right)1+x^2,mathrmdx
    &=Releft(e^ipi/4int_0^inftyfrace^-x^21+ix^2,mathrmdxright)tag5\
    &=Releft(e^i3pi/4e^-iint_0^inftyfrace^i-x^2i-x^2,mathrmdxright)tag6\
    endalign
    $$
    Explanation:

    $(5)$: copy $(2)$

    $(6)$: multiply by $1=left(e^ipi/2e^-iright)left(e^i/iright)$



    Define
    $$
    f(a)=Releft(e^i3pi/4e^-iint_0^inftyfrace^aleft(i-x^2right)i-x^2,mathrmdxright)tag7
    $$
    Then
    $$newcommandResoperatorname*Res
    beginalign
    f(0)
    &=Releft(e^i3pi/4e^-iint_0^inftyfrac1i-x^2,mathrmdxright)\
    &=Releft(e^i3pi/4e^-ifrac12int_-infty^inftyfrac1i-x^2,mathrmdxright)\
    &=Releft(e^i3pi/4e^-ipi iRes_z=e^ipi/4left(frac1i-z^2right)right)\
    &=Releft(fracpi2e^-iright)tag8
    endalign
    $$
    Taking the derivative of $(7)$, we have
    $$
    beginalign
    f'(a)
    &=Releft(e^i3pi/4e^-iint_0^infty e^aleft(i-x^2right),mathrmdxright)\
    &=Releft(e^i3pi/4e^-ie^iaint_0^infty e^-ax^2,mathrmdxright)\
    &=Releft(e^i3pi/4e^-ie^iasqrtfracpi4aright)tag9
    endalign
    $$
    Integrating $(9)$ gives
    $$newcommanderfoperatornameerfnewcommanderfcoperatornameerfc
    beginalign
    f(1)-f(0)
    &=Releft(fracsqrtpi2e^i3pi/4e^-iint_0^1frace^iasqrta,mathrmdaright)tag10\
    &=Releft(sqrtpi e^i3pi/4e^-iint_0^1e^ia^2,mathrmdaright)tag11\
    &=Releft(sqrtpi e^ipie^-iint_0^e^-ipi/4e^-a^2,mathrmdaright)tag12\[3pt]
    &=Releft(-fracpi2e^-ioperatornameerfleft(e^-ipi/4right)right)tag13
    endalign
    $$
    Explanation:

    $(10)$: integrate $(9)$ from $0$ to $1$

    $(11)$: substitute $amapsto a^2$

    $(12)$: substitute $amapsto ae^ipi/4$

    $(13)$: use $erf$



    Combining $(6)$, $(7)$, $(8)$, $(13)$, and $erfc(x)=1-erf(x)$, yields
    $$
    beginalign
    int_0^inftyfraccosleft(x^2right)1+x^2,mathrmdx
    &=Releft(fracpi2e^-ierfcleft(e^-ipi/4right)right)\
    &=0.65280425451173388408tag14
    endalign
    $$
    Thankfully, $(4)$ and $(14)$ agree.






    share|cite|improve this answer

























      up vote
      1
      down vote













      With a bit of contour integration, we can speed up the convergence:
      $$newcommandReoperatornameRe
      beginalign
      int_0^inftyfraccosleft(x^2right)1+x^2,mathrmdx
      &=Releft(int_0^inftyfrace^ix^21+x^2,mathrmdxright)tag1\
      &=Releft(frac1+isqrt2int_0^inftyfrace^-x^21+ix^2,mathrmdxright)tag2\
      &=frac1sqrt2int_0^inftyfrac1+x^21+x^4e^-x^2,mathrmdxtag3
      endalign
      $$
      Explanation:

      $(1)$: $cosleft(x^2right)=Releft(e^ix^2right)$

      $(2)$: substitute $xmapstofrac1+isqrt2x$

      $phantom(2)text:$ change contour from $frac1-isqrt2[0,infty]$ to $[0,infty]$ using Cauchy Integral Theorem

      $(3)$: extract real part



      Numerically integrating $(3)$ gives
      $$
      frac1sqrt2int_0^inftyfrac1+x^21+x^4e^-x^2,mathrmdx
      =0.65280425451173388408tag4
      $$




      $$
      beginalign
      int_0^inftyfraccosleft(x^2right)1+x^2,mathrmdx
      &=Releft(e^ipi/4int_0^inftyfrace^-x^21+ix^2,mathrmdxright)tag5\
      &=Releft(e^i3pi/4e^-iint_0^inftyfrace^i-x^2i-x^2,mathrmdxright)tag6\
      endalign
      $$
      Explanation:

      $(5)$: copy $(2)$

      $(6)$: multiply by $1=left(e^ipi/2e^-iright)left(e^i/iright)$



      Define
      $$
      f(a)=Releft(e^i3pi/4e^-iint_0^inftyfrace^aleft(i-x^2right)i-x^2,mathrmdxright)tag7
      $$
      Then
      $$newcommandResoperatorname*Res
      beginalign
      f(0)
      &=Releft(e^i3pi/4e^-iint_0^inftyfrac1i-x^2,mathrmdxright)\
      &=Releft(e^i3pi/4e^-ifrac12int_-infty^inftyfrac1i-x^2,mathrmdxright)\
      &=Releft(e^i3pi/4e^-ipi iRes_z=e^ipi/4left(frac1i-z^2right)right)\
      &=Releft(fracpi2e^-iright)tag8
      endalign
      $$
      Taking the derivative of $(7)$, we have
      $$
      beginalign
      f'(a)
      &=Releft(e^i3pi/4e^-iint_0^infty e^aleft(i-x^2right),mathrmdxright)\
      &=Releft(e^i3pi/4e^-ie^iaint_0^infty e^-ax^2,mathrmdxright)\
      &=Releft(e^i3pi/4e^-ie^iasqrtfracpi4aright)tag9
      endalign
      $$
      Integrating $(9)$ gives
      $$newcommanderfoperatornameerfnewcommanderfcoperatornameerfc
      beginalign
      f(1)-f(0)
      &=Releft(fracsqrtpi2e^i3pi/4e^-iint_0^1frace^iasqrta,mathrmdaright)tag10\
      &=Releft(sqrtpi e^i3pi/4e^-iint_0^1e^ia^2,mathrmdaright)tag11\
      &=Releft(sqrtpi e^ipie^-iint_0^e^-ipi/4e^-a^2,mathrmdaright)tag12\[3pt]
      &=Releft(-fracpi2e^-ioperatornameerfleft(e^-ipi/4right)right)tag13
      endalign
      $$
      Explanation:

      $(10)$: integrate $(9)$ from $0$ to $1$

      $(11)$: substitute $amapsto a^2$

      $(12)$: substitute $amapsto ae^ipi/4$

      $(13)$: use $erf$



      Combining $(6)$, $(7)$, $(8)$, $(13)$, and $erfc(x)=1-erf(x)$, yields
      $$
      beginalign
      int_0^inftyfraccosleft(x^2right)1+x^2,mathrmdx
      &=Releft(fracpi2e^-ierfcleft(e^-ipi/4right)right)\
      &=0.65280425451173388408tag14
      endalign
      $$
      Thankfully, $(4)$ and $(14)$ agree.






      share|cite|improve this answer























        up vote
        1
        down vote










        up vote
        1
        down vote









        With a bit of contour integration, we can speed up the convergence:
        $$newcommandReoperatornameRe
        beginalign
        int_0^inftyfraccosleft(x^2right)1+x^2,mathrmdx
        &=Releft(int_0^inftyfrace^ix^21+x^2,mathrmdxright)tag1\
        &=Releft(frac1+isqrt2int_0^inftyfrace^-x^21+ix^2,mathrmdxright)tag2\
        &=frac1sqrt2int_0^inftyfrac1+x^21+x^4e^-x^2,mathrmdxtag3
        endalign
        $$
        Explanation:

        $(1)$: $cosleft(x^2right)=Releft(e^ix^2right)$

        $(2)$: substitute $xmapstofrac1+isqrt2x$

        $phantom(2)text:$ change contour from $frac1-isqrt2[0,infty]$ to $[0,infty]$ using Cauchy Integral Theorem

        $(3)$: extract real part



        Numerically integrating $(3)$ gives
        $$
        frac1sqrt2int_0^inftyfrac1+x^21+x^4e^-x^2,mathrmdx
        =0.65280425451173388408tag4
        $$




        $$
        beginalign
        int_0^inftyfraccosleft(x^2right)1+x^2,mathrmdx
        &=Releft(e^ipi/4int_0^inftyfrace^-x^21+ix^2,mathrmdxright)tag5\
        &=Releft(e^i3pi/4e^-iint_0^inftyfrace^i-x^2i-x^2,mathrmdxright)tag6\
        endalign
        $$
        Explanation:

        $(5)$: copy $(2)$

        $(6)$: multiply by $1=left(e^ipi/2e^-iright)left(e^i/iright)$



        Define
        $$
        f(a)=Releft(e^i3pi/4e^-iint_0^inftyfrace^aleft(i-x^2right)i-x^2,mathrmdxright)tag7
        $$
        Then
        $$newcommandResoperatorname*Res
        beginalign
        f(0)
        &=Releft(e^i3pi/4e^-iint_0^inftyfrac1i-x^2,mathrmdxright)\
        &=Releft(e^i3pi/4e^-ifrac12int_-infty^inftyfrac1i-x^2,mathrmdxright)\
        &=Releft(e^i3pi/4e^-ipi iRes_z=e^ipi/4left(frac1i-z^2right)right)\
        &=Releft(fracpi2e^-iright)tag8
        endalign
        $$
        Taking the derivative of $(7)$, we have
        $$
        beginalign
        f'(a)
        &=Releft(e^i3pi/4e^-iint_0^infty e^aleft(i-x^2right),mathrmdxright)\
        &=Releft(e^i3pi/4e^-ie^iaint_0^infty e^-ax^2,mathrmdxright)\
        &=Releft(e^i3pi/4e^-ie^iasqrtfracpi4aright)tag9
        endalign
        $$
        Integrating $(9)$ gives
        $$newcommanderfoperatornameerfnewcommanderfcoperatornameerfc
        beginalign
        f(1)-f(0)
        &=Releft(fracsqrtpi2e^i3pi/4e^-iint_0^1frace^iasqrta,mathrmdaright)tag10\
        &=Releft(sqrtpi e^i3pi/4e^-iint_0^1e^ia^2,mathrmdaright)tag11\
        &=Releft(sqrtpi e^ipie^-iint_0^e^-ipi/4e^-a^2,mathrmdaright)tag12\[3pt]
        &=Releft(-fracpi2e^-ioperatornameerfleft(e^-ipi/4right)right)tag13
        endalign
        $$
        Explanation:

        $(10)$: integrate $(9)$ from $0$ to $1$

        $(11)$: substitute $amapsto a^2$

        $(12)$: substitute $amapsto ae^ipi/4$

        $(13)$: use $erf$



        Combining $(6)$, $(7)$, $(8)$, $(13)$, and $erfc(x)=1-erf(x)$, yields
        $$
        beginalign
        int_0^inftyfraccosleft(x^2right)1+x^2,mathrmdx
        &=Releft(fracpi2e^-ierfcleft(e^-ipi/4right)right)\
        &=0.65280425451173388408tag14
        endalign
        $$
        Thankfully, $(4)$ and $(14)$ agree.






        share|cite|improve this answer













        With a bit of contour integration, we can speed up the convergence:
        $$newcommandReoperatornameRe
        beginalign
        int_0^inftyfraccosleft(x^2right)1+x^2,mathrmdx
        &=Releft(int_0^inftyfrace^ix^21+x^2,mathrmdxright)tag1\
        &=Releft(frac1+isqrt2int_0^inftyfrace^-x^21+ix^2,mathrmdxright)tag2\
        &=frac1sqrt2int_0^inftyfrac1+x^21+x^4e^-x^2,mathrmdxtag3
        endalign
        $$
        Explanation:

        $(1)$: $cosleft(x^2right)=Releft(e^ix^2right)$

        $(2)$: substitute $xmapstofrac1+isqrt2x$

        $phantom(2)text:$ change contour from $frac1-isqrt2[0,infty]$ to $[0,infty]$ using Cauchy Integral Theorem

        $(3)$: extract real part



        Numerically integrating $(3)$ gives
        $$
        frac1sqrt2int_0^inftyfrac1+x^21+x^4e^-x^2,mathrmdx
        =0.65280425451173388408tag4
        $$




        $$
        beginalign
        int_0^inftyfraccosleft(x^2right)1+x^2,mathrmdx
        &=Releft(e^ipi/4int_0^inftyfrace^-x^21+ix^2,mathrmdxright)tag5\
        &=Releft(e^i3pi/4e^-iint_0^inftyfrace^i-x^2i-x^2,mathrmdxright)tag6\
        endalign
        $$
        Explanation:

        $(5)$: copy $(2)$

        $(6)$: multiply by $1=left(e^ipi/2e^-iright)left(e^i/iright)$



        Define
        $$
        f(a)=Releft(e^i3pi/4e^-iint_0^inftyfrace^aleft(i-x^2right)i-x^2,mathrmdxright)tag7
        $$
        Then
        $$newcommandResoperatorname*Res
        beginalign
        f(0)
        &=Releft(e^i3pi/4e^-iint_0^inftyfrac1i-x^2,mathrmdxright)\
        &=Releft(e^i3pi/4e^-ifrac12int_-infty^inftyfrac1i-x^2,mathrmdxright)\
        &=Releft(e^i3pi/4e^-ipi iRes_z=e^ipi/4left(frac1i-z^2right)right)\
        &=Releft(fracpi2e^-iright)tag8
        endalign
        $$
        Taking the derivative of $(7)$, we have
        $$
        beginalign
        f'(a)
        &=Releft(e^i3pi/4e^-iint_0^infty e^aleft(i-x^2right),mathrmdxright)\
        &=Releft(e^i3pi/4e^-ie^iaint_0^infty e^-ax^2,mathrmdxright)\
        &=Releft(e^i3pi/4e^-ie^iasqrtfracpi4aright)tag9
        endalign
        $$
        Integrating $(9)$ gives
        $$newcommanderfoperatornameerfnewcommanderfcoperatornameerfc
        beginalign
        f(1)-f(0)
        &=Releft(fracsqrtpi2e^i3pi/4e^-iint_0^1frace^iasqrta,mathrmdaright)tag10\
        &=Releft(sqrtpi e^i3pi/4e^-iint_0^1e^ia^2,mathrmdaright)tag11\
        &=Releft(sqrtpi e^ipie^-iint_0^e^-ipi/4e^-a^2,mathrmdaright)tag12\[3pt]
        &=Releft(-fracpi2e^-ioperatornameerfleft(e^-ipi/4right)right)tag13
        endalign
        $$
        Explanation:

        $(10)$: integrate $(9)$ from $0$ to $1$

        $(11)$: substitute $amapsto a^2$

        $(12)$: substitute $amapsto ae^ipi/4$

        $(13)$: use $erf$



        Combining $(6)$, $(7)$, $(8)$, $(13)$, and $erfc(x)=1-erf(x)$, yields
        $$
        beginalign
        int_0^inftyfraccosleft(x^2right)1+x^2,mathrmdx
        &=Releft(fracpi2e^-ierfcleft(e^-ipi/4right)right)\
        &=0.65280425451173388408tag14
        endalign
        $$
        Thankfully, $(4)$ and $(14)$ agree.







        share|cite|improve this answer













        share|cite|improve this answer



        share|cite|improve this answer











        answered Jul 21 at 13:57









        robjohn♦

        258k26297612




        258k26297612




















            up vote
            1
            down vote













            $$J=int^infty_0fraccos(x^2)1+x^2dx=Reint^infty_0frace^ix^21+x^2dx=Re,, e^-iunderbraceint^infty_0frace^ia(x^2+1)1+x^2dx_=I(a)$$ where $a=1$.



            Restrict $a$ to be real non-negative.



            $$I'(a)=ie^iaint^infty_0e^iax^2dx$$



            By the substitution $-u=iax^2$, we get
            $$I'(a)=frac12ie^iasqrtfraciaint^-iinfty_0u^-1/2e^-udu=fraci^3/22frace^iasqrt asqrtpi$$



            Let $k=fraci^3/22sqrtpi$.



            $$I(a)=kintfrace^iasqrt ada$$



            By the substitution $ia=-v$, we get
            $$I(a)=ksqrt iintfrace^-vsqrt vdv=-fracsqrtpi2gamma(frac12,v)+C=-fracsqrtpi2gamma(frac12,-ia)+C$$



            Because $I(0)=fracpi2$, so $C=fracpi2$.



            Since $gamma(frac12,x)=sqrtpitexterf(sqrt x)$,
            $$I(a)=-fracpi2texterf(sqrt -isqrt a)+fracpi2=fracpi2texterfc(overbracee^-pi i/4^textprincipal valuecdotsqrt a)$$



            As a result, $$J=Re e^-iI(1)=fracpi2,Re,, e^-itexterfc(e^-pi i/4)$$



            Note that $I(1)=-fracsqrtpi2gamma(frac12,-i)+fracpi2$ is wrong if you calculate it using Wolfram Alpha. However, an equivalent expression $I(1) = fracpi2texterfc(e^-pi i/4)$ is correct as calculated by Wolfram Alpha. I don't know why $-fracsqrtpi2gamma(frac12,-i)+fracpi2ne fracpi2texterfc(e^-pi i/4)$. I suspect this might be a bug of Wolfy.






            share|cite|improve this answer























            • many thx for your solution
              – Wolfdale
              Jul 20 at 17:23










            • This answer gives $1.04460550032123928561$, which is not the same as what I got in two different ways. I also computed the original integral numerically and my answer checks out. The problem is probably minor since it appears the argument to erfc is negated.
              – robjohn♦
              Jul 21 at 14:02











            • @robjohn I edited my answer. But I still can't figure out why Wolfy does not produce the correct result with the lower gamma function. Moreover, I don't know using what argument would make the lower gamma function to evaluate properly.
              – Szeto
              Jul 21 at 15:04










            • @Szeto: In Mathematica, Sqrt[Pi]/2(Sqrt[Pi]-Gamma[1/2,-I]) gives the same numerical result as Pi/2Erf[Exp[-I Pi/4]]
              – robjohn♦
              Jul 21 at 15:51











            • @robjohn I used the online version of WA. Do you think that will work also?
              – Szeto
              Jul 21 at 15:55














            up vote
            1
            down vote













            $$J=int^infty_0fraccos(x^2)1+x^2dx=Reint^infty_0frace^ix^21+x^2dx=Re,, e^-iunderbraceint^infty_0frace^ia(x^2+1)1+x^2dx_=I(a)$$ where $a=1$.



            Restrict $a$ to be real non-negative.



            $$I'(a)=ie^iaint^infty_0e^iax^2dx$$



            By the substitution $-u=iax^2$, we get
            $$I'(a)=frac12ie^iasqrtfraciaint^-iinfty_0u^-1/2e^-udu=fraci^3/22frace^iasqrt asqrtpi$$



            Let $k=fraci^3/22sqrtpi$.



            $$I(a)=kintfrace^iasqrt ada$$



            By the substitution $ia=-v$, we get
            $$I(a)=ksqrt iintfrace^-vsqrt vdv=-fracsqrtpi2gamma(frac12,v)+C=-fracsqrtpi2gamma(frac12,-ia)+C$$



            Because $I(0)=fracpi2$, so $C=fracpi2$.



            Since $gamma(frac12,x)=sqrtpitexterf(sqrt x)$,
            $$I(a)=-fracpi2texterf(sqrt -isqrt a)+fracpi2=fracpi2texterfc(overbracee^-pi i/4^textprincipal valuecdotsqrt a)$$



            As a result, $$J=Re e^-iI(1)=fracpi2,Re,, e^-itexterfc(e^-pi i/4)$$



            Note that $I(1)=-fracsqrtpi2gamma(frac12,-i)+fracpi2$ is wrong if you calculate it using Wolfram Alpha. However, an equivalent expression $I(1) = fracpi2texterfc(e^-pi i/4)$ is correct as calculated by Wolfram Alpha. I don't know why $-fracsqrtpi2gamma(frac12,-i)+fracpi2ne fracpi2texterfc(e^-pi i/4)$. I suspect this might be a bug of Wolfy.






            share|cite|improve this answer























            • many thx for your solution
              – Wolfdale
              Jul 20 at 17:23










            • This answer gives $1.04460550032123928561$, which is not the same as what I got in two different ways. I also computed the original integral numerically and my answer checks out. The problem is probably minor since it appears the argument to erfc is negated.
              – robjohn♦
              Jul 21 at 14:02











            • @robjohn I edited my answer. But I still can't figure out why Wolfy does not produce the correct result with the lower gamma function. Moreover, I don't know using what argument would make the lower gamma function to evaluate properly.
              – Szeto
              Jul 21 at 15:04










            • @Szeto: In Mathematica, Sqrt[Pi]/2(Sqrt[Pi]-Gamma[1/2,-I]) gives the same numerical result as Pi/2Erf[Exp[-I Pi/4]]
              – robjohn♦
              Jul 21 at 15:51











            • @robjohn I used the online version of WA. Do you think that will work also?
              – Szeto
              Jul 21 at 15:55












            up vote
            1
            down vote










            up vote
            1
            down vote









            $$J=int^infty_0fraccos(x^2)1+x^2dx=Reint^infty_0frace^ix^21+x^2dx=Re,, e^-iunderbraceint^infty_0frace^ia(x^2+1)1+x^2dx_=I(a)$$ where $a=1$.



            Restrict $a$ to be real non-negative.



            $$I'(a)=ie^iaint^infty_0e^iax^2dx$$



            By the substitution $-u=iax^2$, we get
            $$I'(a)=frac12ie^iasqrtfraciaint^-iinfty_0u^-1/2e^-udu=fraci^3/22frace^iasqrt asqrtpi$$



            Let $k=fraci^3/22sqrtpi$.



            $$I(a)=kintfrace^iasqrt ada$$



            By the substitution $ia=-v$, we get
            $$I(a)=ksqrt iintfrace^-vsqrt vdv=-fracsqrtpi2gamma(frac12,v)+C=-fracsqrtpi2gamma(frac12,-ia)+C$$



            Because $I(0)=fracpi2$, so $C=fracpi2$.



            Since $gamma(frac12,x)=sqrtpitexterf(sqrt x)$,
            $$I(a)=-fracpi2texterf(sqrt -isqrt a)+fracpi2=fracpi2texterfc(overbracee^-pi i/4^textprincipal valuecdotsqrt a)$$



            As a result, $$J=Re e^-iI(1)=fracpi2,Re,, e^-itexterfc(e^-pi i/4)$$



            Note that $I(1)=-fracsqrtpi2gamma(frac12,-i)+fracpi2$ is wrong if you calculate it using Wolfram Alpha. However, an equivalent expression $I(1) = fracpi2texterfc(e^-pi i/4)$ is correct as calculated by Wolfram Alpha. I don't know why $-fracsqrtpi2gamma(frac12,-i)+fracpi2ne fracpi2texterfc(e^-pi i/4)$. I suspect this might be a bug of Wolfy.






            share|cite|improve this answer















            $$J=int^infty_0fraccos(x^2)1+x^2dx=Reint^infty_0frace^ix^21+x^2dx=Re,, e^-iunderbraceint^infty_0frace^ia(x^2+1)1+x^2dx_=I(a)$$ where $a=1$.



            Restrict $a$ to be real non-negative.



            $$I'(a)=ie^iaint^infty_0e^iax^2dx$$



            By the substitution $-u=iax^2$, we get
            $$I'(a)=frac12ie^iasqrtfraciaint^-iinfty_0u^-1/2e^-udu=fraci^3/22frace^iasqrt asqrtpi$$



            Let $k=fraci^3/22sqrtpi$.



            $$I(a)=kintfrace^iasqrt ada$$



            By the substitution $ia=-v$, we get
            $$I(a)=ksqrt iintfrace^-vsqrt vdv=-fracsqrtpi2gamma(frac12,v)+C=-fracsqrtpi2gamma(frac12,-ia)+C$$



            Because $I(0)=fracpi2$, so $C=fracpi2$.



            Since $gamma(frac12,x)=sqrtpitexterf(sqrt x)$,
            $$I(a)=-fracpi2texterf(sqrt -isqrt a)+fracpi2=fracpi2texterfc(overbracee^-pi i/4^textprincipal valuecdotsqrt a)$$



            As a result, $$J=Re e^-iI(1)=fracpi2,Re,, e^-itexterfc(e^-pi i/4)$$



            Note that $I(1)=-fracsqrtpi2gamma(frac12,-i)+fracpi2$ is wrong if you calculate it using Wolfram Alpha. However, an equivalent expression $I(1) = fracpi2texterfc(e^-pi i/4)$ is correct as calculated by Wolfram Alpha. I don't know why $-fracsqrtpi2gamma(frac12,-i)+fracpi2ne fracpi2texterfc(e^-pi i/4)$. I suspect this might be a bug of Wolfy.







            share|cite|improve this answer















            share|cite|improve this answer



            share|cite|improve this answer








            edited Jul 21 at 15:02


























            answered Jul 20 at 7:19









            Szeto

            4,1731521




            4,1731521











            • many thx for your solution
              – Wolfdale
              Jul 20 at 17:23










            • This answer gives $1.04460550032123928561$, which is not the same as what I got in two different ways. I also computed the original integral numerically and my answer checks out. The problem is probably minor since it appears the argument to erfc is negated.
              – robjohn♦
              Jul 21 at 14:02











            • @robjohn I edited my answer. But I still can't figure out why Wolfy does not produce the correct result with the lower gamma function. Moreover, I don't know using what argument would make the lower gamma function to evaluate properly.
              – Szeto
              Jul 21 at 15:04










            • @Szeto: In Mathematica, Sqrt[Pi]/2(Sqrt[Pi]-Gamma[1/2,-I]) gives the same numerical result as Pi/2Erf[Exp[-I Pi/4]]
              – robjohn♦
              Jul 21 at 15:51











            • @robjohn I used the online version of WA. Do you think that will work also?
              – Szeto
              Jul 21 at 15:55
















            • many thx for your solution
              – Wolfdale
              Jul 20 at 17:23










            • This answer gives $1.04460550032123928561$, which is not the same as what I got in two different ways. I also computed the original integral numerically and my answer checks out. The problem is probably minor since it appears the argument to erfc is negated.
              – robjohn♦
              Jul 21 at 14:02











            • @robjohn I edited my answer. But I still can't figure out why Wolfy does not produce the correct result with the lower gamma function. Moreover, I don't know using what argument would make the lower gamma function to evaluate properly.
              – Szeto
              Jul 21 at 15:04










            • @Szeto: In Mathematica, Sqrt[Pi]/2(Sqrt[Pi]-Gamma[1/2,-I]) gives the same numerical result as Pi/2Erf[Exp[-I Pi/4]]
              – robjohn♦
              Jul 21 at 15:51











            • @robjohn I used the online version of WA. Do you think that will work also?
              – Szeto
              Jul 21 at 15:55















            many thx for your solution
            – Wolfdale
            Jul 20 at 17:23




            many thx for your solution
            – Wolfdale
            Jul 20 at 17:23












            This answer gives $1.04460550032123928561$, which is not the same as what I got in two different ways. I also computed the original integral numerically and my answer checks out. The problem is probably minor since it appears the argument to erfc is negated.
            – robjohn♦
            Jul 21 at 14:02





            This answer gives $1.04460550032123928561$, which is not the same as what I got in two different ways. I also computed the original integral numerically and my answer checks out. The problem is probably minor since it appears the argument to erfc is negated.
            – robjohn♦
            Jul 21 at 14:02













            @robjohn I edited my answer. But I still can't figure out why Wolfy does not produce the correct result with the lower gamma function. Moreover, I don't know using what argument would make the lower gamma function to evaluate properly.
            – Szeto
            Jul 21 at 15:04




            @robjohn I edited my answer. But I still can't figure out why Wolfy does not produce the correct result with the lower gamma function. Moreover, I don't know using what argument would make the lower gamma function to evaluate properly.
            – Szeto
            Jul 21 at 15:04












            @Szeto: In Mathematica, Sqrt[Pi]/2(Sqrt[Pi]-Gamma[1/2,-I]) gives the same numerical result as Pi/2Erf[Exp[-I Pi/4]]
            – robjohn♦
            Jul 21 at 15:51





            @Szeto: In Mathematica, Sqrt[Pi]/2(Sqrt[Pi]-Gamma[1/2,-I]) gives the same numerical result as Pi/2Erf[Exp[-I Pi/4]]
            – robjohn♦
            Jul 21 at 15:51













            @robjohn I used the online version of WA. Do you think that will work also?
            – Szeto
            Jul 21 at 15:55




            @robjohn I used the online version of WA. Do you think that will work also?
            – Szeto
            Jul 21 at 15:55












             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2857285%2fhow-calculate-quad-int-0-infty-frac-cosx21x2-dx%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What is the equation of a 3D cone with generalised tilt?

            Relationship between determinant of matrix and determinant of adjoint?

            Color the edges and diagonals of a regular polygon