How to find $min mathbbE Big[ || (X_1,X_2) - u(X_3) ||^2Big]$ when $X sim Dirichlet (alpha_1, ldots, alpha_4)$
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
I'm trying to find the minimum of the following formula, where $(X_1, cdots, X_4) sim Dirich(alpha_1, cdots, alpha_4)$.
$min_u(cdot) mathbbE Big[ || (X_1,X_2) - u(X_3) ||^2Big]$
Since I know
$$
mathbbE(X_1 | X_3 ) = frac alpha_1 alpha_1 + alpha_2 + alpha_4 (1-X_3) \
mathbbE(X_2 | X_3 ) = frac alpha_2 alpha_1 + alpha_2 + alpha_4 (1-X_3)
$$
$u(cdot)$ might be $u(X_3) = Big[mathbbE(X_1 | X_3 ), mathbbE(X_1 | X_3 )Big]$.
But I can't proceed. Anybody to help me?
probability mean-square-error
add a comment |Â
up vote
0
down vote
favorite
I'm trying to find the minimum of the following formula, where $(X_1, cdots, X_4) sim Dirich(alpha_1, cdots, alpha_4)$.
$min_u(cdot) mathbbE Big[ || (X_1,X_2) - u(X_3) ||^2Big]$
Since I know
$$
mathbbE(X_1 | X_3 ) = frac alpha_1 alpha_1 + alpha_2 + alpha_4 (1-X_3) \
mathbbE(X_2 | X_3 ) = frac alpha_2 alpha_1 + alpha_2 + alpha_4 (1-X_3)
$$
$u(cdot)$ might be $u(X_3) = Big[mathbbE(X_1 | X_3 ), mathbbE(X_1 | X_3 )Big]$.
But I can't proceed. Anybody to help me?
probability mean-square-error
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I'm trying to find the minimum of the following formula, where $(X_1, cdots, X_4) sim Dirich(alpha_1, cdots, alpha_4)$.
$min_u(cdot) mathbbE Big[ || (X_1,X_2) - u(X_3) ||^2Big]$
Since I know
$$
mathbbE(X_1 | X_3 ) = frac alpha_1 alpha_1 + alpha_2 + alpha_4 (1-X_3) \
mathbbE(X_2 | X_3 ) = frac alpha_2 alpha_1 + alpha_2 + alpha_4 (1-X_3)
$$
$u(cdot)$ might be $u(X_3) = Big[mathbbE(X_1 | X_3 ), mathbbE(X_1 | X_3 )Big]$.
But I can't proceed. Anybody to help me?
probability mean-square-error
I'm trying to find the minimum of the following formula, where $(X_1, cdots, X_4) sim Dirich(alpha_1, cdots, alpha_4)$.
$min_u(cdot) mathbbE Big[ || (X_1,X_2) - u(X_3) ||^2Big]$
Since I know
$$
mathbbE(X_1 | X_3 ) = frac alpha_1 alpha_1 + alpha_2 + alpha_4 (1-X_3) \
mathbbE(X_2 | X_3 ) = frac alpha_2 alpha_1 + alpha_2 + alpha_4 (1-X_3)
$$
$u(cdot)$ might be $u(X_3) = Big[mathbbE(X_1 | X_3 ), mathbbE(X_1 | X_3 )Big]$.
But I can't proceed. Anybody to help me?
probability mean-square-error
asked Jul 19 at 13:09
moreblue
1738
1738
add a comment |Â
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2856599%2fhow-to-find-min-mathbbe-big-x-1-x-2-ux-3-2-big-when-x-sim%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password