How to integrate $int frac1sin^4x + cos^4 x ,dx$?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
11
down vote

favorite
7













How to integrate
$$int frac1sin^4x + cos^4 x ,dx$$




I tried the following approach:
$$int frac1sin^4x + cos^4 x ,dx = int frac1sin^4x + (1-sin^2x)^2 ,dx = int frac1sin^4x + 1- 2sin^2x + sin^4x ,dx \
= frac12int frac1sin^4x - sin^2x + frac12 ,dx = frac12int frac1(sin^2x - frac12)^2 + frac14 ,dx$$



The substitution $t = tanfracx2$ yields 4th degree polynomials and a $sin$ substitution would produce polynomials and expressions with square roots while Wolfram Alpha's solution doesn't look that complicated. Another approach:
$sin^4x + cos^4 x = (sin^2 x + cos^2x)(sin^2 x + cos^2 x) - 2sin^2 xcos^2 x = 1 - 2sin^2 xcos^2 x = (1-sqrt2sin x cos x)(1+sqrt2sin x cos x)$

and then I tried substituting: $t = sin x cos x$ and got
$$intfract,dt2(1-2t^2)sqrt1-4t^2$$



Another way would maybe be to make two integrals:
$$int frac1sin^4x + cos^4 x ,dx = int frac1(1-sqrt2sin x cos x)(1+sqrt2sin x cos x) ,dx = \ frac12int frac11-sqrt2sin x cos x ,dx + frac12intfrac11+sqrt2sin x cos x ,dx$$



... and again I tried $t = tanfracx2$ (4th degree polynomial) and $t=sqrt2 sin x cos x$ and I get $fracsqrt 22 int frac,dt(1-t)sqrt1-2t^2$ for the first one.



Any hints?







share|cite|improve this question





















  • Have you tried the Weierstrass substitution?
    – Lucian
    Jun 4 '14 at 19:44











  • Using the en.wikipedia.org/wiki/… will transform the integrand to the simpler $frac1a+bcos4t$.
    – Yves Daoust
    Jun 4 '14 at 19:48







  • 8




    Notice $$sin^4 x + cos^4x = 1 - 2sin^2xcos^2x = 1 - frac12sin^2(2x) = frac14(3+cos4x)$$ Introduce $t = tan2x$, we get $$intfracdxsin^4 x + cos^4x = int frac43 + frac1-t^21+t^2fracdt2(1+t^2) = intfracdt2+t^2 = frac1sqrt2tan^-1left(fractsqrt2right) + textconst.$$
    – achille hui
    Jun 4 '14 at 19:55














up vote
11
down vote

favorite
7













How to integrate
$$int frac1sin^4x + cos^4 x ,dx$$




I tried the following approach:
$$int frac1sin^4x + cos^4 x ,dx = int frac1sin^4x + (1-sin^2x)^2 ,dx = int frac1sin^4x + 1- 2sin^2x + sin^4x ,dx \
= frac12int frac1sin^4x - sin^2x + frac12 ,dx = frac12int frac1(sin^2x - frac12)^2 + frac14 ,dx$$



The substitution $t = tanfracx2$ yields 4th degree polynomials and a $sin$ substitution would produce polynomials and expressions with square roots while Wolfram Alpha's solution doesn't look that complicated. Another approach:
$sin^4x + cos^4 x = (sin^2 x + cos^2x)(sin^2 x + cos^2 x) - 2sin^2 xcos^2 x = 1 - 2sin^2 xcos^2 x = (1-sqrt2sin x cos x)(1+sqrt2sin x cos x)$

and then I tried substituting: $t = sin x cos x$ and got
$$intfract,dt2(1-2t^2)sqrt1-4t^2$$



Another way would maybe be to make two integrals:
$$int frac1sin^4x + cos^4 x ,dx = int frac1(1-sqrt2sin x cos x)(1+sqrt2sin x cos x) ,dx = \ frac12int frac11-sqrt2sin x cos x ,dx + frac12intfrac11+sqrt2sin x cos x ,dx$$



... and again I tried $t = tanfracx2$ (4th degree polynomial) and $t=sqrt2 sin x cos x$ and I get $fracsqrt 22 int frac,dt(1-t)sqrt1-2t^2$ for the first one.



Any hints?







share|cite|improve this question





















  • Have you tried the Weierstrass substitution?
    – Lucian
    Jun 4 '14 at 19:44











  • Using the en.wikipedia.org/wiki/… will transform the integrand to the simpler $frac1a+bcos4t$.
    – Yves Daoust
    Jun 4 '14 at 19:48







  • 8




    Notice $$sin^4 x + cos^4x = 1 - 2sin^2xcos^2x = 1 - frac12sin^2(2x) = frac14(3+cos4x)$$ Introduce $t = tan2x$, we get $$intfracdxsin^4 x + cos^4x = int frac43 + frac1-t^21+t^2fracdt2(1+t^2) = intfracdt2+t^2 = frac1sqrt2tan^-1left(fractsqrt2right) + textconst.$$
    – achille hui
    Jun 4 '14 at 19:55












up vote
11
down vote

favorite
7









up vote
11
down vote

favorite
7






7






How to integrate
$$int frac1sin^4x + cos^4 x ,dx$$




I tried the following approach:
$$int frac1sin^4x + cos^4 x ,dx = int frac1sin^4x + (1-sin^2x)^2 ,dx = int frac1sin^4x + 1- 2sin^2x + sin^4x ,dx \
= frac12int frac1sin^4x - sin^2x + frac12 ,dx = frac12int frac1(sin^2x - frac12)^2 + frac14 ,dx$$



The substitution $t = tanfracx2$ yields 4th degree polynomials and a $sin$ substitution would produce polynomials and expressions with square roots while Wolfram Alpha's solution doesn't look that complicated. Another approach:
$sin^4x + cos^4 x = (sin^2 x + cos^2x)(sin^2 x + cos^2 x) - 2sin^2 xcos^2 x = 1 - 2sin^2 xcos^2 x = (1-sqrt2sin x cos x)(1+sqrt2sin x cos x)$

and then I tried substituting: $t = sin x cos x$ and got
$$intfract,dt2(1-2t^2)sqrt1-4t^2$$



Another way would maybe be to make two integrals:
$$int frac1sin^4x + cos^4 x ,dx = int frac1(1-sqrt2sin x cos x)(1+sqrt2sin x cos x) ,dx = \ frac12int frac11-sqrt2sin x cos x ,dx + frac12intfrac11+sqrt2sin x cos x ,dx$$



... and again I tried $t = tanfracx2$ (4th degree polynomial) and $t=sqrt2 sin x cos x$ and I get $fracsqrt 22 int frac,dt(1-t)sqrt1-2t^2$ for the first one.



Any hints?







share|cite|improve this question














How to integrate
$$int frac1sin^4x + cos^4 x ,dx$$




I tried the following approach:
$$int frac1sin^4x + cos^4 x ,dx = int frac1sin^4x + (1-sin^2x)^2 ,dx = int frac1sin^4x + 1- 2sin^2x + sin^4x ,dx \
= frac12int frac1sin^4x - sin^2x + frac12 ,dx = frac12int frac1(sin^2x - frac12)^2 + frac14 ,dx$$



The substitution $t = tanfracx2$ yields 4th degree polynomials and a $sin$ substitution would produce polynomials and expressions with square roots while Wolfram Alpha's solution doesn't look that complicated. Another approach:
$sin^4x + cos^4 x = (sin^2 x + cos^2x)(sin^2 x + cos^2 x) - 2sin^2 xcos^2 x = 1 - 2sin^2 xcos^2 x = (1-sqrt2sin x cos x)(1+sqrt2sin x cos x)$

and then I tried substituting: $t = sin x cos x$ and got
$$intfract,dt2(1-2t^2)sqrt1-4t^2$$



Another way would maybe be to make two integrals:
$$int frac1sin^4x + cos^4 x ,dx = int frac1(1-sqrt2sin x cos x)(1+sqrt2sin x cos x) ,dx = \ frac12int frac11-sqrt2sin x cos x ,dx + frac12intfrac11+sqrt2sin x cos x ,dx$$



... and again I tried $t = tanfracx2$ (4th degree polynomial) and $t=sqrt2 sin x cos x$ and I get $fracsqrt 22 int frac,dt(1-t)sqrt1-2t^2$ for the first one.



Any hints?









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jun 5 '14 at 8:15









Tunk-Fey

22.7k866100




22.7k866100









asked Jun 4 '14 at 19:40









AltairAC

5391418




5391418











  • Have you tried the Weierstrass substitution?
    – Lucian
    Jun 4 '14 at 19:44











  • Using the en.wikipedia.org/wiki/… will transform the integrand to the simpler $frac1a+bcos4t$.
    – Yves Daoust
    Jun 4 '14 at 19:48







  • 8




    Notice $$sin^4 x + cos^4x = 1 - 2sin^2xcos^2x = 1 - frac12sin^2(2x) = frac14(3+cos4x)$$ Introduce $t = tan2x$, we get $$intfracdxsin^4 x + cos^4x = int frac43 + frac1-t^21+t^2fracdt2(1+t^2) = intfracdt2+t^2 = frac1sqrt2tan^-1left(fractsqrt2right) + textconst.$$
    – achille hui
    Jun 4 '14 at 19:55
















  • Have you tried the Weierstrass substitution?
    – Lucian
    Jun 4 '14 at 19:44











  • Using the en.wikipedia.org/wiki/… will transform the integrand to the simpler $frac1a+bcos4t$.
    – Yves Daoust
    Jun 4 '14 at 19:48







  • 8




    Notice $$sin^4 x + cos^4x = 1 - 2sin^2xcos^2x = 1 - frac12sin^2(2x) = frac14(3+cos4x)$$ Introduce $t = tan2x$, we get $$intfracdxsin^4 x + cos^4x = int frac43 + frac1-t^21+t^2fracdt2(1+t^2) = intfracdt2+t^2 = frac1sqrt2tan^-1left(fractsqrt2right) + textconst.$$
    – achille hui
    Jun 4 '14 at 19:55















Have you tried the Weierstrass substitution?
– Lucian
Jun 4 '14 at 19:44





Have you tried the Weierstrass substitution?
– Lucian
Jun 4 '14 at 19:44













Using the en.wikipedia.org/wiki/… will transform the integrand to the simpler $frac1a+bcos4t$.
– Yves Daoust
Jun 4 '14 at 19:48





Using the en.wikipedia.org/wiki/… will transform the integrand to the simpler $frac1a+bcos4t$.
– Yves Daoust
Jun 4 '14 at 19:48





8




8




Notice $$sin^4 x + cos^4x = 1 - 2sin^2xcos^2x = 1 - frac12sin^2(2x) = frac14(3+cos4x)$$ Introduce $t = tan2x$, we get $$intfracdxsin^4 x + cos^4x = int frac43 + frac1-t^21+t^2fracdt2(1+t^2) = intfracdt2+t^2 = frac1sqrt2tan^-1left(fractsqrt2right) + textconst.$$
– achille hui
Jun 4 '14 at 19:55




Notice $$sin^4 x + cos^4x = 1 - 2sin^2xcos^2x = 1 - frac12sin^2(2x) = frac14(3+cos4x)$$ Introduce $t = tan2x$, we get $$intfracdxsin^4 x + cos^4x = int frac43 + frac1-t^21+t^2fracdt2(1+t^2) = intfracdt2+t^2 = frac1sqrt2tan^-1left(fractsqrt2right) + textconst.$$
– achille hui
Jun 4 '14 at 19:55










3 Answers
3






active

oldest

votes

















up vote
16
down vote



accepted










Simplify the denominator in the following way:
$$sin^4x+cos^4x=(sin^2x+cos^2x)^2-2sin^2xcos^2x=1-fracsin^2(2x)2=frac1+cos^2(2x)2=frac2+tan^2(2x)2sec^2(2x)$$
Hence, the integral you are dealing with is:
$$int frac2sec^2(2x)2+tan^2(2x),dx$$
I guess the next step is pretty obvious now. ;)






share|cite|improve this answer





















  • May I ask how you got: $frac2+tan^2(2x)2sec^2(2x)$ ? Did you use Wolfram Alpha, "try and error", a certain trick, a specific algorithm, ... ? I verified for myself that this is true but how to "come up" with something like this?
    – AltairAC
    Jun 13 '14 at 9:04







  • 1




    @Shirohige: I used only the basic trigonometric identities. First factor out $cos^2x$ from the numerator and use that $cos^2x=frac1sec^2x$. Then write $sec^2x$ in the numerator as $1+tan^2x$.
    – Pranav Arora
    Jun 13 '14 at 14:01

















up vote
6
down vote













Another approach:



We have
$$
frac1sin^4x+cos^4x,tag1
$$
Multiply $(1)$ by $dfractan^4xtan^4x$ we obtain
$$
fractan^4xsin^4x(1+tan^4x)=fracsec^4x1+tan^4x=frac(1+tan^2x)sec^2x1+tan^4x.tag2
$$
Letting $t=tan x$, the integral turns out to be
$$eqalign

intfrac1+t^21+t^4 dt&=frac12intleft[frac1t^2-sqrt2t+1+frac1t^2+sqrt2t+1right] dt\
&=frac12intleft[frac1left(t-dfrac1sqrt2right)^2+dfrac34+frac1left(t+dfrac1sqrt2right)^2+dfrac34right] dt.tag3

$$
Using substitution $u=dfracsqrt32left(t-dfrac1sqrt2right)$ and $v=dfracsqrt32left(t+dfrac1sqrt2right)$, the integral in $(3)$ can easily be evaluated.




Addendum :



Another way to evaluate $displaystyleintfrac1+t^21+t^4 dt$ is dividing the integrand by $dfract^2t^2$, we obtain
$$eqalign

intfrac1+dfrac1t^2t^2+dfrac1t^2 dt&=intfrac1+dfrac1t^2left(t-dfrac1tright)^2+2 dt.

$$
Now let $u=t-dfrac1t;Rightarrow;du=left(1+dfrac1t^2right) dt$, the integral turns out to be
$$
intfrac1u^2+2 du.tag4
$$
The evaluation of the integral $(4)$ can follow @achillehui's comment.






share|cite|improve this answer






























    up vote
    0
    down vote













    Convert the exponential powers to multiple angles. From deMoivre's theorem, with $ninmathbbN$:
    $$
    beginalign
    left( e^i theta right)^n &= e^i ntheta \
    left( cos theta + i sin theta right)^n &= cos ntheta + i sin ntheta
    endalign
    $$
    These intermediate formulas may help:
    $$
    beginalign
    cos 2theta &= cos^2 theta + sin^2 theta \
    sin 2theta &= 2 cos theta sin 2 theta \
    endalign
    $$
    Reduce the denominator
    $$
    sin ^4(x)+cos ^4(x) = frac14 (cos (4 x)+3)
    $$
    The primitive is
    $$
    int frac1cos^4x + sin^4x , dx =
    int frac1cos (4 x)+3 , dx =
    left(4 sqrt2right)^-1arctan left(fractan (2 x)sqrt2right)
    $$



    Here is a look at the integrand:



    plot






    share|cite|improve this answer





















      Your Answer




      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: false,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );








       

      draft saved


      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f820830%2fhow-to-integrate-int-frac1-sin4x-cos4-x-dx%23new-answer', 'question_page');

      );

      Post as a guest






























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      16
      down vote



      accepted










      Simplify the denominator in the following way:
      $$sin^4x+cos^4x=(sin^2x+cos^2x)^2-2sin^2xcos^2x=1-fracsin^2(2x)2=frac1+cos^2(2x)2=frac2+tan^2(2x)2sec^2(2x)$$
      Hence, the integral you are dealing with is:
      $$int frac2sec^2(2x)2+tan^2(2x),dx$$
      I guess the next step is pretty obvious now. ;)






      share|cite|improve this answer





















      • May I ask how you got: $frac2+tan^2(2x)2sec^2(2x)$ ? Did you use Wolfram Alpha, "try and error", a certain trick, a specific algorithm, ... ? I verified for myself that this is true but how to "come up" with something like this?
        – AltairAC
        Jun 13 '14 at 9:04







      • 1




        @Shirohige: I used only the basic trigonometric identities. First factor out $cos^2x$ from the numerator and use that $cos^2x=frac1sec^2x$. Then write $sec^2x$ in the numerator as $1+tan^2x$.
        – Pranav Arora
        Jun 13 '14 at 14:01














      up vote
      16
      down vote



      accepted










      Simplify the denominator in the following way:
      $$sin^4x+cos^4x=(sin^2x+cos^2x)^2-2sin^2xcos^2x=1-fracsin^2(2x)2=frac1+cos^2(2x)2=frac2+tan^2(2x)2sec^2(2x)$$
      Hence, the integral you are dealing with is:
      $$int frac2sec^2(2x)2+tan^2(2x),dx$$
      I guess the next step is pretty obvious now. ;)






      share|cite|improve this answer





















      • May I ask how you got: $frac2+tan^2(2x)2sec^2(2x)$ ? Did you use Wolfram Alpha, "try and error", a certain trick, a specific algorithm, ... ? I verified for myself that this is true but how to "come up" with something like this?
        – AltairAC
        Jun 13 '14 at 9:04







      • 1




        @Shirohige: I used only the basic trigonometric identities. First factor out $cos^2x$ from the numerator and use that $cos^2x=frac1sec^2x$. Then write $sec^2x$ in the numerator as $1+tan^2x$.
        – Pranav Arora
        Jun 13 '14 at 14:01












      up vote
      16
      down vote



      accepted







      up vote
      16
      down vote



      accepted






      Simplify the denominator in the following way:
      $$sin^4x+cos^4x=(sin^2x+cos^2x)^2-2sin^2xcos^2x=1-fracsin^2(2x)2=frac1+cos^2(2x)2=frac2+tan^2(2x)2sec^2(2x)$$
      Hence, the integral you are dealing with is:
      $$int frac2sec^2(2x)2+tan^2(2x),dx$$
      I guess the next step is pretty obvious now. ;)






      share|cite|improve this answer













      Simplify the denominator in the following way:
      $$sin^4x+cos^4x=(sin^2x+cos^2x)^2-2sin^2xcos^2x=1-fracsin^2(2x)2=frac1+cos^2(2x)2=frac2+tan^2(2x)2sec^2(2x)$$
      Hence, the integral you are dealing with is:
      $$int frac2sec^2(2x)2+tan^2(2x),dx$$
      I guess the next step is pretty obvious now. ;)







      share|cite|improve this answer













      share|cite|improve this answer



      share|cite|improve this answer











      answered Jun 4 '14 at 19:58









      Pranav Arora

      8,4822462




      8,4822462











      • May I ask how you got: $frac2+tan^2(2x)2sec^2(2x)$ ? Did you use Wolfram Alpha, "try and error", a certain trick, a specific algorithm, ... ? I verified for myself that this is true but how to "come up" with something like this?
        – AltairAC
        Jun 13 '14 at 9:04







      • 1




        @Shirohige: I used only the basic trigonometric identities. First factor out $cos^2x$ from the numerator and use that $cos^2x=frac1sec^2x$. Then write $sec^2x$ in the numerator as $1+tan^2x$.
        – Pranav Arora
        Jun 13 '14 at 14:01
















      • May I ask how you got: $frac2+tan^2(2x)2sec^2(2x)$ ? Did you use Wolfram Alpha, "try and error", a certain trick, a specific algorithm, ... ? I verified for myself that this is true but how to "come up" with something like this?
        – AltairAC
        Jun 13 '14 at 9:04







      • 1




        @Shirohige: I used only the basic trigonometric identities. First factor out $cos^2x$ from the numerator and use that $cos^2x=frac1sec^2x$. Then write $sec^2x$ in the numerator as $1+tan^2x$.
        – Pranav Arora
        Jun 13 '14 at 14:01















      May I ask how you got: $frac2+tan^2(2x)2sec^2(2x)$ ? Did you use Wolfram Alpha, "try and error", a certain trick, a specific algorithm, ... ? I verified for myself that this is true but how to "come up" with something like this?
      – AltairAC
      Jun 13 '14 at 9:04





      May I ask how you got: $frac2+tan^2(2x)2sec^2(2x)$ ? Did you use Wolfram Alpha, "try and error", a certain trick, a specific algorithm, ... ? I verified for myself that this is true but how to "come up" with something like this?
      – AltairAC
      Jun 13 '14 at 9:04





      1




      1




      @Shirohige: I used only the basic trigonometric identities. First factor out $cos^2x$ from the numerator and use that $cos^2x=frac1sec^2x$. Then write $sec^2x$ in the numerator as $1+tan^2x$.
      – Pranav Arora
      Jun 13 '14 at 14:01




      @Shirohige: I used only the basic trigonometric identities. First factor out $cos^2x$ from the numerator and use that $cos^2x=frac1sec^2x$. Then write $sec^2x$ in the numerator as $1+tan^2x$.
      – Pranav Arora
      Jun 13 '14 at 14:01










      up vote
      6
      down vote













      Another approach:



      We have
      $$
      frac1sin^4x+cos^4x,tag1
      $$
      Multiply $(1)$ by $dfractan^4xtan^4x$ we obtain
      $$
      fractan^4xsin^4x(1+tan^4x)=fracsec^4x1+tan^4x=frac(1+tan^2x)sec^2x1+tan^4x.tag2
      $$
      Letting $t=tan x$, the integral turns out to be
      $$eqalign

      intfrac1+t^21+t^4 dt&=frac12intleft[frac1t^2-sqrt2t+1+frac1t^2+sqrt2t+1right] dt\
      &=frac12intleft[frac1left(t-dfrac1sqrt2right)^2+dfrac34+frac1left(t+dfrac1sqrt2right)^2+dfrac34right] dt.tag3

      $$
      Using substitution $u=dfracsqrt32left(t-dfrac1sqrt2right)$ and $v=dfracsqrt32left(t+dfrac1sqrt2right)$, the integral in $(3)$ can easily be evaluated.




      Addendum :



      Another way to evaluate $displaystyleintfrac1+t^21+t^4 dt$ is dividing the integrand by $dfract^2t^2$, we obtain
      $$eqalign

      intfrac1+dfrac1t^2t^2+dfrac1t^2 dt&=intfrac1+dfrac1t^2left(t-dfrac1tright)^2+2 dt.

      $$
      Now let $u=t-dfrac1t;Rightarrow;du=left(1+dfrac1t^2right) dt$, the integral turns out to be
      $$
      intfrac1u^2+2 du.tag4
      $$
      The evaluation of the integral $(4)$ can follow @achillehui's comment.






      share|cite|improve this answer



























        up vote
        6
        down vote













        Another approach:



        We have
        $$
        frac1sin^4x+cos^4x,tag1
        $$
        Multiply $(1)$ by $dfractan^4xtan^4x$ we obtain
        $$
        fractan^4xsin^4x(1+tan^4x)=fracsec^4x1+tan^4x=frac(1+tan^2x)sec^2x1+tan^4x.tag2
        $$
        Letting $t=tan x$, the integral turns out to be
        $$eqalign

        intfrac1+t^21+t^4 dt&=frac12intleft[frac1t^2-sqrt2t+1+frac1t^2+sqrt2t+1right] dt\
        &=frac12intleft[frac1left(t-dfrac1sqrt2right)^2+dfrac34+frac1left(t+dfrac1sqrt2right)^2+dfrac34right] dt.tag3

        $$
        Using substitution $u=dfracsqrt32left(t-dfrac1sqrt2right)$ and $v=dfracsqrt32left(t+dfrac1sqrt2right)$, the integral in $(3)$ can easily be evaluated.




        Addendum :



        Another way to evaluate $displaystyleintfrac1+t^21+t^4 dt$ is dividing the integrand by $dfract^2t^2$, we obtain
        $$eqalign

        intfrac1+dfrac1t^2t^2+dfrac1t^2 dt&=intfrac1+dfrac1t^2left(t-dfrac1tright)^2+2 dt.

        $$
        Now let $u=t-dfrac1t;Rightarrow;du=left(1+dfrac1t^2right) dt$, the integral turns out to be
        $$
        intfrac1u^2+2 du.tag4
        $$
        The evaluation of the integral $(4)$ can follow @achillehui's comment.






        share|cite|improve this answer

























          up vote
          6
          down vote










          up vote
          6
          down vote









          Another approach:



          We have
          $$
          frac1sin^4x+cos^4x,tag1
          $$
          Multiply $(1)$ by $dfractan^4xtan^4x$ we obtain
          $$
          fractan^4xsin^4x(1+tan^4x)=fracsec^4x1+tan^4x=frac(1+tan^2x)sec^2x1+tan^4x.tag2
          $$
          Letting $t=tan x$, the integral turns out to be
          $$eqalign

          intfrac1+t^21+t^4 dt&=frac12intleft[frac1t^2-sqrt2t+1+frac1t^2+sqrt2t+1right] dt\
          &=frac12intleft[frac1left(t-dfrac1sqrt2right)^2+dfrac34+frac1left(t+dfrac1sqrt2right)^2+dfrac34right] dt.tag3

          $$
          Using substitution $u=dfracsqrt32left(t-dfrac1sqrt2right)$ and $v=dfracsqrt32left(t+dfrac1sqrt2right)$, the integral in $(3)$ can easily be evaluated.




          Addendum :



          Another way to evaluate $displaystyleintfrac1+t^21+t^4 dt$ is dividing the integrand by $dfract^2t^2$, we obtain
          $$eqalign

          intfrac1+dfrac1t^2t^2+dfrac1t^2 dt&=intfrac1+dfrac1t^2left(t-dfrac1tright)^2+2 dt.

          $$
          Now let $u=t-dfrac1t;Rightarrow;du=left(1+dfrac1t^2right) dt$, the integral turns out to be
          $$
          intfrac1u^2+2 du.tag4
          $$
          The evaluation of the integral $(4)$ can follow @achillehui's comment.






          share|cite|improve this answer















          Another approach:



          We have
          $$
          frac1sin^4x+cos^4x,tag1
          $$
          Multiply $(1)$ by $dfractan^4xtan^4x$ we obtain
          $$
          fractan^4xsin^4x(1+tan^4x)=fracsec^4x1+tan^4x=frac(1+tan^2x)sec^2x1+tan^4x.tag2
          $$
          Letting $t=tan x$, the integral turns out to be
          $$eqalign

          intfrac1+t^21+t^4 dt&=frac12intleft[frac1t^2-sqrt2t+1+frac1t^2+sqrt2t+1right] dt\
          &=frac12intleft[frac1left(t-dfrac1sqrt2right)^2+dfrac34+frac1left(t+dfrac1sqrt2right)^2+dfrac34right] dt.tag3

          $$
          Using substitution $u=dfracsqrt32left(t-dfrac1sqrt2right)$ and $v=dfracsqrt32left(t+dfrac1sqrt2right)$, the integral in $(3)$ can easily be evaluated.




          Addendum :



          Another way to evaluate $displaystyleintfrac1+t^21+t^4 dt$ is dividing the integrand by $dfract^2t^2$, we obtain
          $$eqalign

          intfrac1+dfrac1t^2t^2+dfrac1t^2 dt&=intfrac1+dfrac1t^2left(t-dfrac1tright)^2+2 dt.

          $$
          Now let $u=t-dfrac1t;Rightarrow;du=left(1+dfrac1t^2right) dt$, the integral turns out to be
          $$
          intfrac1u^2+2 du.tag4
          $$
          The evaluation of the integral $(4)$ can follow @achillehui's comment.







          share|cite|improve this answer















          share|cite|improve this answer



          share|cite|improve this answer








          edited Jun 5 '14 at 11:21


























          answered Jun 5 '14 at 8:08









          Tunk-Fey

          22.7k866100




          22.7k866100




















              up vote
              0
              down vote













              Convert the exponential powers to multiple angles. From deMoivre's theorem, with $ninmathbbN$:
              $$
              beginalign
              left( e^i theta right)^n &= e^i ntheta \
              left( cos theta + i sin theta right)^n &= cos ntheta + i sin ntheta
              endalign
              $$
              These intermediate formulas may help:
              $$
              beginalign
              cos 2theta &= cos^2 theta + sin^2 theta \
              sin 2theta &= 2 cos theta sin 2 theta \
              endalign
              $$
              Reduce the denominator
              $$
              sin ^4(x)+cos ^4(x) = frac14 (cos (4 x)+3)
              $$
              The primitive is
              $$
              int frac1cos^4x + sin^4x , dx =
              int frac1cos (4 x)+3 , dx =
              left(4 sqrt2right)^-1arctan left(fractan (2 x)sqrt2right)
              $$



              Here is a look at the integrand:



              plot






              share|cite|improve this answer

























                up vote
                0
                down vote













                Convert the exponential powers to multiple angles. From deMoivre's theorem, with $ninmathbbN$:
                $$
                beginalign
                left( e^i theta right)^n &= e^i ntheta \
                left( cos theta + i sin theta right)^n &= cos ntheta + i sin ntheta
                endalign
                $$
                These intermediate formulas may help:
                $$
                beginalign
                cos 2theta &= cos^2 theta + sin^2 theta \
                sin 2theta &= 2 cos theta sin 2 theta \
                endalign
                $$
                Reduce the denominator
                $$
                sin ^4(x)+cos ^4(x) = frac14 (cos (4 x)+3)
                $$
                The primitive is
                $$
                int frac1cos^4x + sin^4x , dx =
                int frac1cos (4 x)+3 , dx =
                left(4 sqrt2right)^-1arctan left(fractan (2 x)sqrt2right)
                $$



                Here is a look at the integrand:



                plot






                share|cite|improve this answer























                  up vote
                  0
                  down vote










                  up vote
                  0
                  down vote









                  Convert the exponential powers to multiple angles. From deMoivre's theorem, with $ninmathbbN$:
                  $$
                  beginalign
                  left( e^i theta right)^n &= e^i ntheta \
                  left( cos theta + i sin theta right)^n &= cos ntheta + i sin ntheta
                  endalign
                  $$
                  These intermediate formulas may help:
                  $$
                  beginalign
                  cos 2theta &= cos^2 theta + sin^2 theta \
                  sin 2theta &= 2 cos theta sin 2 theta \
                  endalign
                  $$
                  Reduce the denominator
                  $$
                  sin ^4(x)+cos ^4(x) = frac14 (cos (4 x)+3)
                  $$
                  The primitive is
                  $$
                  int frac1cos^4x + sin^4x , dx =
                  int frac1cos (4 x)+3 , dx =
                  left(4 sqrt2right)^-1arctan left(fractan (2 x)sqrt2right)
                  $$



                  Here is a look at the integrand:



                  plot






                  share|cite|improve this answer













                  Convert the exponential powers to multiple angles. From deMoivre's theorem, with $ninmathbbN$:
                  $$
                  beginalign
                  left( e^i theta right)^n &= e^i ntheta \
                  left( cos theta + i sin theta right)^n &= cos ntheta + i sin ntheta
                  endalign
                  $$
                  These intermediate formulas may help:
                  $$
                  beginalign
                  cos 2theta &= cos^2 theta + sin^2 theta \
                  sin 2theta &= 2 cos theta sin 2 theta \
                  endalign
                  $$
                  Reduce the denominator
                  $$
                  sin ^4(x)+cos ^4(x) = frac14 (cos (4 x)+3)
                  $$
                  The primitive is
                  $$
                  int frac1cos^4x + sin^4x , dx =
                  int frac1cos (4 x)+3 , dx =
                  left(4 sqrt2right)^-1arctan left(fractan (2 x)sqrt2right)
                  $$



                  Here is a look at the integrand:



                  plot







                  share|cite|improve this answer













                  share|cite|improve this answer



                  share|cite|improve this answer











                  answered Apr 17 '17 at 16:17









                  dantopa

                  6,02131640




                  6,02131640






















                       

                      draft saved


                      draft discarded


























                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f820830%2fhow-to-integrate-int-frac1-sin4x-cos4-x-dx%23new-answer', 'question_page');

                      );

                      Post as a guest













































































                      Comments

                      Popular posts from this blog

                      What is the equation of a 3D cone with generalised tilt?

                      Color the edges and diagonals of a regular polygon

                      Relationship between determinant of matrix and determinant of adjoint?