How to integrate $int frac1sin^4x + cos^4 x ,dx$?
Clash Royale CLAN TAG#URR8PPP
up vote
11
down vote
favorite
How to integrate
$$int frac1sin^4x + cos^4 x ,dx$$
I tried the following approach:
$$int frac1sin^4x + cos^4 x ,dx = int frac1sin^4x + (1-sin^2x)^2 ,dx = int frac1sin^4x + 1- 2sin^2x + sin^4x ,dx \
= frac12int frac1sin^4x - sin^2x + frac12 ,dx = frac12int frac1(sin^2x - frac12)^2 + frac14 ,dx$$
The substitution $t = tanfracx2$ yields 4th degree polynomials and a $sin$ substitution would produce polynomials and expressions with square roots while Wolfram Alpha's solution doesn't look that complicated. Another approach:
$sin^4x + cos^4 x = (sin^2 x + cos^2x)(sin^2 x + cos^2 x) - 2sin^2 xcos^2 x = 1 - 2sin^2 xcos^2 x = (1-sqrt2sin x cos x)(1+sqrt2sin x cos x)$
and then I tried substituting: $t = sin x cos x$ and got
$$intfract,dt2(1-2t^2)sqrt1-4t^2$$
Another way would maybe be to make two integrals:
$$int frac1sin^4x + cos^4 x ,dx = int frac1(1-sqrt2sin x cos x)(1+sqrt2sin x cos x) ,dx = \ frac12int frac11-sqrt2sin x cos x ,dx + frac12intfrac11+sqrt2sin x cos x ,dx$$
... and again I tried $t = tanfracx2$ (4th degree polynomial) and $t=sqrt2 sin x cos x$ and I get $fracsqrt 22 int frac,dt(1-t)sqrt1-2t^2$ for the first one.
Any hints?
calculus real-analysis integration indefinite-integrals
add a comment |Â
up vote
11
down vote
favorite
How to integrate
$$int frac1sin^4x + cos^4 x ,dx$$
I tried the following approach:
$$int frac1sin^4x + cos^4 x ,dx = int frac1sin^4x + (1-sin^2x)^2 ,dx = int frac1sin^4x + 1- 2sin^2x + sin^4x ,dx \
= frac12int frac1sin^4x - sin^2x + frac12 ,dx = frac12int frac1(sin^2x - frac12)^2 + frac14 ,dx$$
The substitution $t = tanfracx2$ yields 4th degree polynomials and a $sin$ substitution would produce polynomials and expressions with square roots while Wolfram Alpha's solution doesn't look that complicated. Another approach:
$sin^4x + cos^4 x = (sin^2 x + cos^2x)(sin^2 x + cos^2 x) - 2sin^2 xcos^2 x = 1 - 2sin^2 xcos^2 x = (1-sqrt2sin x cos x)(1+sqrt2sin x cos x)$
and then I tried substituting: $t = sin x cos x$ and got
$$intfract,dt2(1-2t^2)sqrt1-4t^2$$
Another way would maybe be to make two integrals:
$$int frac1sin^4x + cos^4 x ,dx = int frac1(1-sqrt2sin x cos x)(1+sqrt2sin x cos x) ,dx = \ frac12int frac11-sqrt2sin x cos x ,dx + frac12intfrac11+sqrt2sin x cos x ,dx$$
... and again I tried $t = tanfracx2$ (4th degree polynomial) and $t=sqrt2 sin x cos x$ and I get $fracsqrt 22 int frac,dt(1-t)sqrt1-2t^2$ for the first one.
Any hints?
calculus real-analysis integration indefinite-integrals
Have you tried the Weierstrass substitution?
– Lucian
Jun 4 '14 at 19:44
Using the en.wikipedia.org/wiki/… will transform the integrand to the simpler $frac1a+bcos4t$.
– Yves Daoust
Jun 4 '14 at 19:48
8
Notice $$sin^4 x + cos^4x = 1 - 2sin^2xcos^2x = 1 - frac12sin^2(2x) = frac14(3+cos4x)$$ Introduce $t = tan2x$, we get $$intfracdxsin^4 x + cos^4x = int frac43 + frac1-t^21+t^2fracdt2(1+t^2) = intfracdt2+t^2 = frac1sqrt2tan^-1left(fractsqrt2right) + textconst.$$
– achille hui
Jun 4 '14 at 19:55
add a comment |Â
up vote
11
down vote
favorite
up vote
11
down vote
favorite
How to integrate
$$int frac1sin^4x + cos^4 x ,dx$$
I tried the following approach:
$$int frac1sin^4x + cos^4 x ,dx = int frac1sin^4x + (1-sin^2x)^2 ,dx = int frac1sin^4x + 1- 2sin^2x + sin^4x ,dx \
= frac12int frac1sin^4x - sin^2x + frac12 ,dx = frac12int frac1(sin^2x - frac12)^2 + frac14 ,dx$$
The substitution $t = tanfracx2$ yields 4th degree polynomials and a $sin$ substitution would produce polynomials and expressions with square roots while Wolfram Alpha's solution doesn't look that complicated. Another approach:
$sin^4x + cos^4 x = (sin^2 x + cos^2x)(sin^2 x + cos^2 x) - 2sin^2 xcos^2 x = 1 - 2sin^2 xcos^2 x = (1-sqrt2sin x cos x)(1+sqrt2sin x cos x)$
and then I tried substituting: $t = sin x cos x$ and got
$$intfract,dt2(1-2t^2)sqrt1-4t^2$$
Another way would maybe be to make two integrals:
$$int frac1sin^4x + cos^4 x ,dx = int frac1(1-sqrt2sin x cos x)(1+sqrt2sin x cos x) ,dx = \ frac12int frac11-sqrt2sin x cos x ,dx + frac12intfrac11+sqrt2sin x cos x ,dx$$
... and again I tried $t = tanfracx2$ (4th degree polynomial) and $t=sqrt2 sin x cos x$ and I get $fracsqrt 22 int frac,dt(1-t)sqrt1-2t^2$ for the first one.
Any hints?
calculus real-analysis integration indefinite-integrals
How to integrate
$$int frac1sin^4x + cos^4 x ,dx$$
I tried the following approach:
$$int frac1sin^4x + cos^4 x ,dx = int frac1sin^4x + (1-sin^2x)^2 ,dx = int frac1sin^4x + 1- 2sin^2x + sin^4x ,dx \
= frac12int frac1sin^4x - sin^2x + frac12 ,dx = frac12int frac1(sin^2x - frac12)^2 + frac14 ,dx$$
The substitution $t = tanfracx2$ yields 4th degree polynomials and a $sin$ substitution would produce polynomials and expressions with square roots while Wolfram Alpha's solution doesn't look that complicated. Another approach:
$sin^4x + cos^4 x = (sin^2 x + cos^2x)(sin^2 x + cos^2 x) - 2sin^2 xcos^2 x = 1 - 2sin^2 xcos^2 x = (1-sqrt2sin x cos x)(1+sqrt2sin x cos x)$
and then I tried substituting: $t = sin x cos x$ and got
$$intfract,dt2(1-2t^2)sqrt1-4t^2$$
Another way would maybe be to make two integrals:
$$int frac1sin^4x + cos^4 x ,dx = int frac1(1-sqrt2sin x cos x)(1+sqrt2sin x cos x) ,dx = \ frac12int frac11-sqrt2sin x cos x ,dx + frac12intfrac11+sqrt2sin x cos x ,dx$$
... and again I tried $t = tanfracx2$ (4th degree polynomial) and $t=sqrt2 sin x cos x$ and I get $fracsqrt 22 int frac,dt(1-t)sqrt1-2t^2$ for the first one.
Any hints?
calculus real-analysis integration indefinite-integrals
edited Jun 5 '14 at 8:15


Tunk-Fey
22.7k866100
22.7k866100
asked Jun 4 '14 at 19:40
AltairAC
5391418
5391418
Have you tried the Weierstrass substitution?
– Lucian
Jun 4 '14 at 19:44
Using the en.wikipedia.org/wiki/… will transform the integrand to the simpler $frac1a+bcos4t$.
– Yves Daoust
Jun 4 '14 at 19:48
8
Notice $$sin^4 x + cos^4x = 1 - 2sin^2xcos^2x = 1 - frac12sin^2(2x) = frac14(3+cos4x)$$ Introduce $t = tan2x$, we get $$intfracdxsin^4 x + cos^4x = int frac43 + frac1-t^21+t^2fracdt2(1+t^2) = intfracdt2+t^2 = frac1sqrt2tan^-1left(fractsqrt2right) + textconst.$$
– achille hui
Jun 4 '14 at 19:55
add a comment |Â
Have you tried the Weierstrass substitution?
– Lucian
Jun 4 '14 at 19:44
Using the en.wikipedia.org/wiki/… will transform the integrand to the simpler $frac1a+bcos4t$.
– Yves Daoust
Jun 4 '14 at 19:48
8
Notice $$sin^4 x + cos^4x = 1 - 2sin^2xcos^2x = 1 - frac12sin^2(2x) = frac14(3+cos4x)$$ Introduce $t = tan2x$, we get $$intfracdxsin^4 x + cos^4x = int frac43 + frac1-t^21+t^2fracdt2(1+t^2) = intfracdt2+t^2 = frac1sqrt2tan^-1left(fractsqrt2right) + textconst.$$
– achille hui
Jun 4 '14 at 19:55
Have you tried the Weierstrass substitution?
– Lucian
Jun 4 '14 at 19:44
Have you tried the Weierstrass substitution?
– Lucian
Jun 4 '14 at 19:44
Using the en.wikipedia.org/wiki/… will transform the integrand to the simpler $frac1a+bcos4t$.
– Yves Daoust
Jun 4 '14 at 19:48
Using the en.wikipedia.org/wiki/… will transform the integrand to the simpler $frac1a+bcos4t$.
– Yves Daoust
Jun 4 '14 at 19:48
8
8
Notice $$sin^4 x + cos^4x = 1 - 2sin^2xcos^2x = 1 - frac12sin^2(2x) = frac14(3+cos4x)$$ Introduce $t = tan2x$, we get $$intfracdxsin^4 x + cos^4x = int frac43 + frac1-t^21+t^2fracdt2(1+t^2) = intfracdt2+t^2 = frac1sqrt2tan^-1left(fractsqrt2right) + textconst.$$
– achille hui
Jun 4 '14 at 19:55
Notice $$sin^4 x + cos^4x = 1 - 2sin^2xcos^2x = 1 - frac12sin^2(2x) = frac14(3+cos4x)$$ Introduce $t = tan2x$, we get $$intfracdxsin^4 x + cos^4x = int frac43 + frac1-t^21+t^2fracdt2(1+t^2) = intfracdt2+t^2 = frac1sqrt2tan^-1left(fractsqrt2right) + textconst.$$
– achille hui
Jun 4 '14 at 19:55
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
16
down vote
accepted
Simplify the denominator in the following way:
$$sin^4x+cos^4x=(sin^2x+cos^2x)^2-2sin^2xcos^2x=1-fracsin^2(2x)2=frac1+cos^2(2x)2=frac2+tan^2(2x)2sec^2(2x)$$
Hence, the integral you are dealing with is:
$$int frac2sec^2(2x)2+tan^2(2x),dx$$
I guess the next step is pretty obvious now. ;)
May I ask how you got: $frac2+tan^2(2x)2sec^2(2x)$ ? Did you use Wolfram Alpha, "try and error", a certain trick, a specific algorithm, ... ? I verified for myself that this is true but how to "come up" with something like this?
– AltairAC
Jun 13 '14 at 9:04
1
@Shirohige: I used only the basic trigonometric identities. First factor out $cos^2x$ from the numerator and use that $cos^2x=frac1sec^2x$. Then write $sec^2x$ in the numerator as $1+tan^2x$.
– Pranav Arora
Jun 13 '14 at 14:01
add a comment |Â
up vote
6
down vote
Another approach:
We have
$$
frac1sin^4x+cos^4x,tag1
$$
Multiply $(1)$ by $dfractan^4xtan^4x$ we obtain
$$
fractan^4xsin^4x(1+tan^4x)=fracsec^4x1+tan^4x=frac(1+tan^2x)sec^2x1+tan^4x.tag2
$$
Letting $t=tan x$, the integral turns out to be
$$eqalign
intfrac1+t^21+t^4 dt&=frac12intleft[frac1t^2-sqrt2t+1+frac1t^2+sqrt2t+1right] dt\
&=frac12intleft[frac1left(t-dfrac1sqrt2right)^2+dfrac34+frac1left(t+dfrac1sqrt2right)^2+dfrac34right] dt.tag3
$$
Using substitution $u=dfracsqrt32left(t-dfrac1sqrt2right)$ and $v=dfracsqrt32left(t+dfrac1sqrt2right)$, the integral in $(3)$ can easily be evaluated.
Addendum :
Another way to evaluate $displaystyleintfrac1+t^21+t^4 dt$ is dividing the integrand by $dfract^2t^2$, we obtain
$$eqalign
intfrac1+dfrac1t^2t^2+dfrac1t^2 dt&=intfrac1+dfrac1t^2left(t-dfrac1tright)^2+2 dt.
$$
Now let $u=t-dfrac1t;Rightarrow;du=left(1+dfrac1t^2right) dt$, the integral turns out to be
$$
intfrac1u^2+2 du.tag4
$$
The evaluation of the integral $(4)$ can follow @achillehui's comment.
add a comment |Â
up vote
0
down vote
Convert the exponential powers to multiple angles. From deMoivre's theorem, with $ninmathbbN$:
$$
beginalign
left( e^i theta right)^n &= e^i ntheta \
left( cos theta + i sin theta right)^n &= cos ntheta + i sin ntheta
endalign
$$
These intermediate formulas may help:
$$
beginalign
cos 2theta &= cos^2 theta + sin^2 theta \
sin 2theta &= 2 cos theta sin 2 theta \
endalign
$$
Reduce the denominator
$$
sin ^4(x)+cos ^4(x) = frac14 (cos (4 x)+3)
$$
The primitive is
$$
int frac1cos^4x + sin^4x , dx =
int frac1cos (4 x)+3 , dx =
left(4 sqrt2right)^-1arctan left(fractan (2 x)sqrt2right)
$$
Here is a look at the integrand:
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
16
down vote
accepted
Simplify the denominator in the following way:
$$sin^4x+cos^4x=(sin^2x+cos^2x)^2-2sin^2xcos^2x=1-fracsin^2(2x)2=frac1+cos^2(2x)2=frac2+tan^2(2x)2sec^2(2x)$$
Hence, the integral you are dealing with is:
$$int frac2sec^2(2x)2+tan^2(2x),dx$$
I guess the next step is pretty obvious now. ;)
May I ask how you got: $frac2+tan^2(2x)2sec^2(2x)$ ? Did you use Wolfram Alpha, "try and error", a certain trick, a specific algorithm, ... ? I verified for myself that this is true but how to "come up" with something like this?
– AltairAC
Jun 13 '14 at 9:04
1
@Shirohige: I used only the basic trigonometric identities. First factor out $cos^2x$ from the numerator and use that $cos^2x=frac1sec^2x$. Then write $sec^2x$ in the numerator as $1+tan^2x$.
– Pranav Arora
Jun 13 '14 at 14:01
add a comment |Â
up vote
16
down vote
accepted
Simplify the denominator in the following way:
$$sin^4x+cos^4x=(sin^2x+cos^2x)^2-2sin^2xcos^2x=1-fracsin^2(2x)2=frac1+cos^2(2x)2=frac2+tan^2(2x)2sec^2(2x)$$
Hence, the integral you are dealing with is:
$$int frac2sec^2(2x)2+tan^2(2x),dx$$
I guess the next step is pretty obvious now. ;)
May I ask how you got: $frac2+tan^2(2x)2sec^2(2x)$ ? Did you use Wolfram Alpha, "try and error", a certain trick, a specific algorithm, ... ? I verified for myself that this is true but how to "come up" with something like this?
– AltairAC
Jun 13 '14 at 9:04
1
@Shirohige: I used only the basic trigonometric identities. First factor out $cos^2x$ from the numerator and use that $cos^2x=frac1sec^2x$. Then write $sec^2x$ in the numerator as $1+tan^2x$.
– Pranav Arora
Jun 13 '14 at 14:01
add a comment |Â
up vote
16
down vote
accepted
up vote
16
down vote
accepted
Simplify the denominator in the following way:
$$sin^4x+cos^4x=(sin^2x+cos^2x)^2-2sin^2xcos^2x=1-fracsin^2(2x)2=frac1+cos^2(2x)2=frac2+tan^2(2x)2sec^2(2x)$$
Hence, the integral you are dealing with is:
$$int frac2sec^2(2x)2+tan^2(2x),dx$$
I guess the next step is pretty obvious now. ;)
Simplify the denominator in the following way:
$$sin^4x+cos^4x=(sin^2x+cos^2x)^2-2sin^2xcos^2x=1-fracsin^2(2x)2=frac1+cos^2(2x)2=frac2+tan^2(2x)2sec^2(2x)$$
Hence, the integral you are dealing with is:
$$int frac2sec^2(2x)2+tan^2(2x),dx$$
I guess the next step is pretty obvious now. ;)
answered Jun 4 '14 at 19:58


Pranav Arora
8,4822462
8,4822462
May I ask how you got: $frac2+tan^2(2x)2sec^2(2x)$ ? Did you use Wolfram Alpha, "try and error", a certain trick, a specific algorithm, ... ? I verified for myself that this is true but how to "come up" with something like this?
– AltairAC
Jun 13 '14 at 9:04
1
@Shirohige: I used only the basic trigonometric identities. First factor out $cos^2x$ from the numerator and use that $cos^2x=frac1sec^2x$. Then write $sec^2x$ in the numerator as $1+tan^2x$.
– Pranav Arora
Jun 13 '14 at 14:01
add a comment |Â
May I ask how you got: $frac2+tan^2(2x)2sec^2(2x)$ ? Did you use Wolfram Alpha, "try and error", a certain trick, a specific algorithm, ... ? I verified for myself that this is true but how to "come up" with something like this?
– AltairAC
Jun 13 '14 at 9:04
1
@Shirohige: I used only the basic trigonometric identities. First factor out $cos^2x$ from the numerator and use that $cos^2x=frac1sec^2x$. Then write $sec^2x$ in the numerator as $1+tan^2x$.
– Pranav Arora
Jun 13 '14 at 14:01
May I ask how you got: $frac2+tan^2(2x)2sec^2(2x)$ ? Did you use Wolfram Alpha, "try and error", a certain trick, a specific algorithm, ... ? I verified for myself that this is true but how to "come up" with something like this?
– AltairAC
Jun 13 '14 at 9:04
May I ask how you got: $frac2+tan^2(2x)2sec^2(2x)$ ? Did you use Wolfram Alpha, "try and error", a certain trick, a specific algorithm, ... ? I verified for myself that this is true but how to "come up" with something like this?
– AltairAC
Jun 13 '14 at 9:04
1
1
@Shirohige: I used only the basic trigonometric identities. First factor out $cos^2x$ from the numerator and use that $cos^2x=frac1sec^2x$. Then write $sec^2x$ in the numerator as $1+tan^2x$.
– Pranav Arora
Jun 13 '14 at 14:01
@Shirohige: I used only the basic trigonometric identities. First factor out $cos^2x$ from the numerator and use that $cos^2x=frac1sec^2x$. Then write $sec^2x$ in the numerator as $1+tan^2x$.
– Pranav Arora
Jun 13 '14 at 14:01
add a comment |Â
up vote
6
down vote
Another approach:
We have
$$
frac1sin^4x+cos^4x,tag1
$$
Multiply $(1)$ by $dfractan^4xtan^4x$ we obtain
$$
fractan^4xsin^4x(1+tan^4x)=fracsec^4x1+tan^4x=frac(1+tan^2x)sec^2x1+tan^4x.tag2
$$
Letting $t=tan x$, the integral turns out to be
$$eqalign
intfrac1+t^21+t^4 dt&=frac12intleft[frac1t^2-sqrt2t+1+frac1t^2+sqrt2t+1right] dt\
&=frac12intleft[frac1left(t-dfrac1sqrt2right)^2+dfrac34+frac1left(t+dfrac1sqrt2right)^2+dfrac34right] dt.tag3
$$
Using substitution $u=dfracsqrt32left(t-dfrac1sqrt2right)$ and $v=dfracsqrt32left(t+dfrac1sqrt2right)$, the integral in $(3)$ can easily be evaluated.
Addendum :
Another way to evaluate $displaystyleintfrac1+t^21+t^4 dt$ is dividing the integrand by $dfract^2t^2$, we obtain
$$eqalign
intfrac1+dfrac1t^2t^2+dfrac1t^2 dt&=intfrac1+dfrac1t^2left(t-dfrac1tright)^2+2 dt.
$$
Now let $u=t-dfrac1t;Rightarrow;du=left(1+dfrac1t^2right) dt$, the integral turns out to be
$$
intfrac1u^2+2 du.tag4
$$
The evaluation of the integral $(4)$ can follow @achillehui's comment.
add a comment |Â
up vote
6
down vote
Another approach:
We have
$$
frac1sin^4x+cos^4x,tag1
$$
Multiply $(1)$ by $dfractan^4xtan^4x$ we obtain
$$
fractan^4xsin^4x(1+tan^4x)=fracsec^4x1+tan^4x=frac(1+tan^2x)sec^2x1+tan^4x.tag2
$$
Letting $t=tan x$, the integral turns out to be
$$eqalign
intfrac1+t^21+t^4 dt&=frac12intleft[frac1t^2-sqrt2t+1+frac1t^2+sqrt2t+1right] dt\
&=frac12intleft[frac1left(t-dfrac1sqrt2right)^2+dfrac34+frac1left(t+dfrac1sqrt2right)^2+dfrac34right] dt.tag3
$$
Using substitution $u=dfracsqrt32left(t-dfrac1sqrt2right)$ and $v=dfracsqrt32left(t+dfrac1sqrt2right)$, the integral in $(3)$ can easily be evaluated.
Addendum :
Another way to evaluate $displaystyleintfrac1+t^21+t^4 dt$ is dividing the integrand by $dfract^2t^2$, we obtain
$$eqalign
intfrac1+dfrac1t^2t^2+dfrac1t^2 dt&=intfrac1+dfrac1t^2left(t-dfrac1tright)^2+2 dt.
$$
Now let $u=t-dfrac1t;Rightarrow;du=left(1+dfrac1t^2right) dt$, the integral turns out to be
$$
intfrac1u^2+2 du.tag4
$$
The evaluation of the integral $(4)$ can follow @achillehui's comment.
add a comment |Â
up vote
6
down vote
up vote
6
down vote
Another approach:
We have
$$
frac1sin^4x+cos^4x,tag1
$$
Multiply $(1)$ by $dfractan^4xtan^4x$ we obtain
$$
fractan^4xsin^4x(1+tan^4x)=fracsec^4x1+tan^4x=frac(1+tan^2x)sec^2x1+tan^4x.tag2
$$
Letting $t=tan x$, the integral turns out to be
$$eqalign
intfrac1+t^21+t^4 dt&=frac12intleft[frac1t^2-sqrt2t+1+frac1t^2+sqrt2t+1right] dt\
&=frac12intleft[frac1left(t-dfrac1sqrt2right)^2+dfrac34+frac1left(t+dfrac1sqrt2right)^2+dfrac34right] dt.tag3
$$
Using substitution $u=dfracsqrt32left(t-dfrac1sqrt2right)$ and $v=dfracsqrt32left(t+dfrac1sqrt2right)$, the integral in $(3)$ can easily be evaluated.
Addendum :
Another way to evaluate $displaystyleintfrac1+t^21+t^4 dt$ is dividing the integrand by $dfract^2t^2$, we obtain
$$eqalign
intfrac1+dfrac1t^2t^2+dfrac1t^2 dt&=intfrac1+dfrac1t^2left(t-dfrac1tright)^2+2 dt.
$$
Now let $u=t-dfrac1t;Rightarrow;du=left(1+dfrac1t^2right) dt$, the integral turns out to be
$$
intfrac1u^2+2 du.tag4
$$
The evaluation of the integral $(4)$ can follow @achillehui's comment.
Another approach:
We have
$$
frac1sin^4x+cos^4x,tag1
$$
Multiply $(1)$ by $dfractan^4xtan^4x$ we obtain
$$
fractan^4xsin^4x(1+tan^4x)=fracsec^4x1+tan^4x=frac(1+tan^2x)sec^2x1+tan^4x.tag2
$$
Letting $t=tan x$, the integral turns out to be
$$eqalign
intfrac1+t^21+t^4 dt&=frac12intleft[frac1t^2-sqrt2t+1+frac1t^2+sqrt2t+1right] dt\
&=frac12intleft[frac1left(t-dfrac1sqrt2right)^2+dfrac34+frac1left(t+dfrac1sqrt2right)^2+dfrac34right] dt.tag3
$$
Using substitution $u=dfracsqrt32left(t-dfrac1sqrt2right)$ and $v=dfracsqrt32left(t+dfrac1sqrt2right)$, the integral in $(3)$ can easily be evaluated.
Addendum :
Another way to evaluate $displaystyleintfrac1+t^21+t^4 dt$ is dividing the integrand by $dfract^2t^2$, we obtain
$$eqalign
intfrac1+dfrac1t^2t^2+dfrac1t^2 dt&=intfrac1+dfrac1t^2left(t-dfrac1tright)^2+2 dt.
$$
Now let $u=t-dfrac1t;Rightarrow;du=left(1+dfrac1t^2right) dt$, the integral turns out to be
$$
intfrac1u^2+2 du.tag4
$$
The evaluation of the integral $(4)$ can follow @achillehui's comment.
edited Jun 5 '14 at 11:21
answered Jun 5 '14 at 8:08


Tunk-Fey
22.7k866100
22.7k866100
add a comment |Â
add a comment |Â
up vote
0
down vote
Convert the exponential powers to multiple angles. From deMoivre's theorem, with $ninmathbbN$:
$$
beginalign
left( e^i theta right)^n &= e^i ntheta \
left( cos theta + i sin theta right)^n &= cos ntheta + i sin ntheta
endalign
$$
These intermediate formulas may help:
$$
beginalign
cos 2theta &= cos^2 theta + sin^2 theta \
sin 2theta &= 2 cos theta sin 2 theta \
endalign
$$
Reduce the denominator
$$
sin ^4(x)+cos ^4(x) = frac14 (cos (4 x)+3)
$$
The primitive is
$$
int frac1cos^4x + sin^4x , dx =
int frac1cos (4 x)+3 , dx =
left(4 sqrt2right)^-1arctan left(fractan (2 x)sqrt2right)
$$
Here is a look at the integrand:
add a comment |Â
up vote
0
down vote
Convert the exponential powers to multiple angles. From deMoivre's theorem, with $ninmathbbN$:
$$
beginalign
left( e^i theta right)^n &= e^i ntheta \
left( cos theta + i sin theta right)^n &= cos ntheta + i sin ntheta
endalign
$$
These intermediate formulas may help:
$$
beginalign
cos 2theta &= cos^2 theta + sin^2 theta \
sin 2theta &= 2 cos theta sin 2 theta \
endalign
$$
Reduce the denominator
$$
sin ^4(x)+cos ^4(x) = frac14 (cos (4 x)+3)
$$
The primitive is
$$
int frac1cos^4x + sin^4x , dx =
int frac1cos (4 x)+3 , dx =
left(4 sqrt2right)^-1arctan left(fractan (2 x)sqrt2right)
$$
Here is a look at the integrand:
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Convert the exponential powers to multiple angles. From deMoivre's theorem, with $ninmathbbN$:
$$
beginalign
left( e^i theta right)^n &= e^i ntheta \
left( cos theta + i sin theta right)^n &= cos ntheta + i sin ntheta
endalign
$$
These intermediate formulas may help:
$$
beginalign
cos 2theta &= cos^2 theta + sin^2 theta \
sin 2theta &= 2 cos theta sin 2 theta \
endalign
$$
Reduce the denominator
$$
sin ^4(x)+cos ^4(x) = frac14 (cos (4 x)+3)
$$
The primitive is
$$
int frac1cos^4x + sin^4x , dx =
int frac1cos (4 x)+3 , dx =
left(4 sqrt2right)^-1arctan left(fractan (2 x)sqrt2right)
$$
Here is a look at the integrand:
Convert the exponential powers to multiple angles. From deMoivre's theorem, with $ninmathbbN$:
$$
beginalign
left( e^i theta right)^n &= e^i ntheta \
left( cos theta + i sin theta right)^n &= cos ntheta + i sin ntheta
endalign
$$
These intermediate formulas may help:
$$
beginalign
cos 2theta &= cos^2 theta + sin^2 theta \
sin 2theta &= 2 cos theta sin 2 theta \
endalign
$$
Reduce the denominator
$$
sin ^4(x)+cos ^4(x) = frac14 (cos (4 x)+3)
$$
The primitive is
$$
int frac1cos^4x + sin^4x , dx =
int frac1cos (4 x)+3 , dx =
left(4 sqrt2right)^-1arctan left(fractan (2 x)sqrt2right)
$$
Here is a look at the integrand:
answered Apr 17 '17 at 16:17
dantopa
6,02131640
6,02131640
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f820830%2fhow-to-integrate-int-frac1-sin4x-cos4-x-dx%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Have you tried the Weierstrass substitution?
– Lucian
Jun 4 '14 at 19:44
Using the en.wikipedia.org/wiki/… will transform the integrand to the simpler $frac1a+bcos4t$.
– Yves Daoust
Jun 4 '14 at 19:48
8
Notice $$sin^4 x + cos^4x = 1 - 2sin^2xcos^2x = 1 - frac12sin^2(2x) = frac14(3+cos4x)$$ Introduce $t = tan2x$, we get $$intfracdxsin^4 x + cos^4x = int frac43 + frac1-t^21+t^2fracdt2(1+t^2) = intfracdt2+t^2 = frac1sqrt2tan^-1left(fractsqrt2right) + textconst.$$
– achille hui
Jun 4 '14 at 19:55